论文标题

朋友和陌生人在图表上行走

Friends and Strangers Walking on Graphs

论文作者

Defant, Colin, Kravitz, Noah

论文摘要

给定的图形$ x $和$ y $带有顶点套装$ v(x)$和$ v(y)$的同一基数,我们定义一个图$ \ m athsf {fs}}(x,y)$,其顶点套件由所有clijections $σ:v(x)\ avine of V(x)\ divect $ vestions $ vestions $ vections $ vections $ nivect $ nections $ fections $ nevient $σ' Vertices $ a,b \ in V(x)$中的$σ(a)$和$σ(b)$在$ y $中相邻。这种设置在漫步在图形上的朋友和陌生人方面具有自然的解释,它提供了由转换产生的对称群体的Cayley图形,著名的$ 15 $ puzzzle,Wilson研究的$ 15 $ puzuzz的概括,以及与Stanley的作品以及与Flag Flag $ h $ h $ -vectors相关的作品。我们在将注意力集中在$ x $的某些特定选择上之前,我们获得了有关图形$ \ mathsf {fs}(x,y)$的几个一般结果。当$ x $是一个路径图时,我们表明$ \ mathsf {fs}(x,y)$的连接组件对应于$ y $的补充的无环方向。当$ x $是一个周期时,我们将获得$ \ mathsf {fs}(x,y)$的连接组件的完整说明,以$ y $的互补的曲折acyclic取向。然后,我们在图表上得出了各种必要和/或足够的条件$ x $和$ y $,以保证$ \ mathsf {fs}(x,y)$的连接性。最后,我们提出了一些有前途的进一步问题。

Given graphs $X$ and $Y$ with vertex sets $V(X)$ and $V(Y)$ of the same cardinality, we define a graph $\mathsf{FS}(X,Y)$ whose vertex set consists of all bijections $σ:V(X)\to V(Y)$, where two bijections $σ$ and $σ'$ are adjacent if they agree everywhere except for two adjacent vertices $a,b \in V(X)$ such that $σ(a)$ and $σ(b)$ are adjacent in $Y$. This setup, which has a natural interpretation in terms of friends and strangers walking on graphs, provides a common generalization of Cayley graphs of symmetric groups generated by transpositions, the famous $15$-puzzle, generalizations of the $15$-puzzle as studied by Wilson, and work of Stanley related to flag $h$-vectors. We derive several general results about the graphs $\mathsf{FS}(X,Y)$ before focusing our attention on some specific choices of $X$. When $X$ is a path graph, we show that the connected components of $\mathsf{FS}(X,Y)$ correspond to the acyclic orientations of the complement of $Y$. When $X$ is a cycle, we obtain a full description of the connected components of $\mathsf{FS}(X,Y)$ in terms of toric acyclic orientations of the complement of $Y$. We then derive various necessary and/or sufficient conditions on the graphs $X$ and $Y$ that guarantee the connectedness of $\mathsf{FS}(X,Y)$. Finally, we raise several promising further questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源