论文标题
刚性运动的最小表面
Minimal Surfaces from Rigid Motions
论文作者
论文摘要
方程是针对$ \ mathbb {r}^n $形状的形状得出的,为此,刚性运动在$ \ mathbb {r}^{n+1} $中产生最小的表面。一些基本情况但非常规的方面详细讨论了经典案例$ n = 2 $(由H.F. Scherk在1835年解决)。
Equations are derived for the shape of a hypersurface in $\mathbb{R}^N$ for which a rigid motion yields a minimal surface in $\mathbb{R}^{N+1}$. Some elementary, but unconventional, aspects of the classical case $N=2$ (solved by H.F. Scherk in 1835) are discussed in some detail.