论文标题

计算广义schröder路径

Counting generalized Schröder paths

论文作者

Chen, Xiaomei, Xiang, Yuan

论文摘要

Schröder路径是从$(0,0)$到$(2n,0)$的晶格路径,带有步骤$(1,1)$,$(1,-1)$和$(2,0)$,从未低于$ x- $ axis。一条小的Schröder路径是一条Schröder路径,在$ x- $轴上没有$(2,0)$步骤。在本文中,分别为SchröderPaths和SmallSchröder路径给出了3变量生成函数$ r_l(x,y,z)$。作为推论,我们以统一的方式获得了根据该顺序计算的几种广义schröder路径的生成函数。

A Schröder path is a lattice path from $(0,0)$ to $(2n,0)$ with steps $(1,1)$, $(1,-1)$ and $(2,0)$ that never goes below the $x-$axis. A small Schröder path is a Schröder path with no $(2,0)$ steps on the $x-$axis. In this paper, a 3-variable generating function $R_L(x,y,z)$ is given for Schröder paths and small Schröder paths respectively. As corollaries, we obtain the generating functions for several kinds of generalized Schröder paths counted according to the order in a unified way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源