论文标题

简短的证明$ {\ Mathcal B}(L_1)$不适合

A short proof that ${\mathcal B}(L_1)$ is not amenable

论文作者

Choi, Yemon

论文摘要

$ {\ Mathcal B}(e)$的不典型性在古典Banach空间中很难证明,但现在以$ e = \ ell_p $和$ e = l_p $而闻名,均为$ 1 \ leq P <\ leq p <\ infty $。但是,论点是间接的:$ l_1 $的证明是通过$ \ ell^\ infty({\ Mathcal k}(\ ell_1))$进行的,而DAWS和Runde(Studia Math。,2010)开发的转移原则。在本说明中,我们提供了一个简短的证明,表明$ {\ Mathcal B}(L_1)$及其某些子代词不明,这完全绕开了所有这些机械。我们的方法基于$ L_1 $上代表运算符的理想的经典属性,并表明$ {\ Mathcal b}(L_1)$甚至都不可正约。

Non-amenability of ${\mathcal B}(E)$ has been surprisingly difficult to prove for the classical Banach spaces, but is now known for $E= \ell_p$ and $E=L_p$ for all $1\leq p<\infty$. However, the arguments are rather indirect: the proof for $L_1$ goes via non-amenability of $\ell^\infty({\mathcal K}(\ell_1))$ and a transference principle developed by Daws and Runde (Studia Math., 2010). In this note, we provide a short proof that ${\mathcal B}(L_1)$ and some of its subalgebras are non-amenable, which completely bypasses all of this machinery. Our approach is based on classical properties of the ideal of representable operators on $L_1$, and shows that ${\mathcal B}(L_1)$ is not even approximately amenable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源