论文标题
螺旋和椭圆星系结构缩放定律的起源的统一场景
A unified scenario for the origin of spiral and elliptical galaxy structural scaling laws
论文作者
论文摘要
椭圆形(E)和螺旋(S)星系紧密但具有不同的缩放定律,这些定律将其恒星质量,半径和特征性速度连接起来。质量和速度,例如,在螺旋形中紧密地缩放,几乎不依赖星系半径(“ Tully-Fisher关系”; TFR)。另一方面,椭圆形似乎在尺寸质量的速度空间(“基本平面”; FP)中追踪2D表面。多年来,许多研究试图理解这些经验关系,通常是根据病毒定理的E星系的变化以及螺旋螺旋的暗物质晕与缩放关系的变化。我们使用lambda冷暗物质(LCDM)宇宙学水动力学模拟,以表明椭圆形和螺旋的缩放关系是(i)(i)紧密的星系质量质量黑晕质量质量关系以及(ii)冷暗物质卤素的自相似质量素材。在这种解释中,给定恒星质量的e和s星系属于相似质量的光环,其不同的缩放定律是由于其发光半径中包含的不同量的暗物质而产生的。这种情况暗示了适用于所有形态星系的新的星系距离指标,并为长期存在的难题提供了简单,直观的解释,例如为什么TFR独立于表面亮度,或者是导致FP中“倾斜”的原因。我们的结果为LCDM在强烈的非线性方案中的预测提供了强有力的支持,并为进一步改进星系形成的宇宙学模拟提供了指导。
Elliptical (E) and spiral (S) galaxies follow tight, but different, scaling laws that link their stellar masses, radii, and characteristic velocities. Mass and velocity, for example, scale tightly in spirals with little dependence on galaxy radius (the "Tully-Fisher relation"; TFR). On the other hand, ellipticals appear to trace a 2D surface in size-mass-velocity space (the "Fundamental Plane"; FP). Over the years, a number of studies have attempted to understand these empirical relations, usually in terms of variations of the virial theorem for E galaxies and in terms of the scaling relations of dark matter halos for spirals. We use Lambda cold dark matter (LCDM) cosmological hydrodynamical simulations to show that the scaling relations of both ellipticals and spirals arise as the result of (i) a tight galaxy mass-dark halo mass relation and (ii) the self-similar mass profile of cold dark matter halos. In this interpretation, E and S galaxies of a given stellar mass inhabit halos of similar masses, and their different scaling laws result from the varying amounts of dark matter enclosed within their luminous radii. This scenario suggests a new galaxy distance indicator applicable to galaxies of all morphologies and provides simple and intuitive explanations for long-standing puzzles, such as why the TFR is independent of surface brightness, or what causes the "tilt" in the FP. Our results provide strong support for the predictions of LCDM in the strongly non-linear regime, as well as guidance for further improvements to cosmological simulations of galaxy formation.