论文标题
自旋诱导的爱因斯坦 - 斯卡尔 - 高斯河内理论中的黑洞标量
Spin-induced black hole scalarization in Einstein-scalar-Gauss-Bonnet theory
论文作者
论文摘要
我们在一类模型中构建具有自旋诱导标量的黑洞溶液,在这些模型中,标量场与拓扑高斯 - 骨网术语二次耦合。从速度不稳定的Kerr解决方案开始,我们获得了标量的黑洞家族,使标量场具有甚至奇怪的奇偶校验,我们研究了它们的存在领域。标量的黑洞可能违反Kerr旋转结合。我们确定标量黑洞溶液的“临界”家族,使得度量函数和地平线标量场的扩展不再允许真正的系数。对于此处考虑的二次耦合,具有自旋诱导标液化的溶液在具有相同质量和角动量的Kerr溶液中受到偏爱。
We construct black hole solutions with spin-induced scalarization in a class of models where a scalar field is quadratically coupled to the topological Gauss-Bonnet term. Starting from the tachyonically unstable Kerr solutions, we obtain families of scalarized black holes such that the scalar field has either even or odd parity, and we investigate their domain of existence. The scalarized black holes can violate the Kerr rotation bound. We identify "critical" families of scalarized black hole solutions such that the expansion of the metric functions and of the scalar field at the horizon no longer allows for real coefficients. For the quadratic coupling considered here, solutions with spin-induced scalarization are entropically favored over Kerr solutions with the same mass and angular momentum.