论文标题
北极星辅助供体 - 受体角色逆转在有机染料之间的共振能量转移中,与可调的微博的电磁模式紧密耦合
Polariton-assisted donor-acceptor role reversal in resonant energy transfer between organic dyes strongly coupled to electromagnetic modes of a tuneable microcavity
论文作者
论文摘要
分子的兴奋子跃迁与局部电磁场之间的共振相互作用允许形成杂交光层的偏振状态。光和物质状态的这种杂交已被证明能够显着改变光腔内放置的分子集合的内在特性。在这里,我们已经在典型的基于寡核苷酸的分子信标中实现了激子转变之间的强耦合,并标记了一对有机染料分子,证明了对受体共振能量传递的有效供体,以及可调的开放式启动空腔模式。该混合系统在非共振激发激发下的光致发光以及光含量杂交状态对腔化失调的相对种群的依赖性。此外,通过分析该系统中能量状态之间的松弛途径的依赖性,我们证明,主要的强耦合在供体染料分子中,腔光子光子与激子转变的强耦合可以导致能量转变,从而导致能量转移,以至于能量转移从受体供应者降低供体的供体供应者,从而使Chrolir worl holos均能成就成就,从而使供应量成就成就,从而使得能量转移,从而逐渐成就均可成就,从而逐渐成就的供应者,从而产生了能量转移逆转或狂欢节效果。我们的实验数据证实了限制电磁场控制和介导偏振辅助远程能量转移的理论上预测的可能性,从而为遥控化学,能量收集,能量传递和感应的新方法铺平了道路。
Resonant interaction between excitonic transitions of molecules and localized electromagnetic field allows the formation of hybrid light-matter polaritonic states. This hybridization of the light and the matter states has been shown to be able to significantly alter the intrinsic properties of molecular ensembles placed inside the optical cavity. Here, we have achieved strong coupling between the excitonic transition in typical oligonucleotide-based molecular beacons labelled with a pair of organic dye molecules, demonstrating an efficient donor to acceptor resonance energy transfer, and the tuneable open-access cavity mode. The photoluminescence of this hybrid system under non-resonant laser excitation and the dependence of the relative population of light-matter hybrid states on cavity detuning have been characterized. Furthermore, by analysing the dependence of the relaxation pathways between energy states in this system, we have demonstrated that predominant strong coupling of the cavity photon to the exciton transition in the donor dye molecule can lead to such a large an energy shift that the energy transfer from the acceptor exciton reservoir to the mainly donor lower polaritonic state can be achieved, thus yielding the chromophores donor-acceptor role reversal or carnival effect. Our experimental data confirm the theoretically predicted possibility for confined electromagnetic fields to control and mediate polariton-assisted remote energy transfer thus paving the way to new approaches to remote-controlled chemistry, energy harvesting, energy transfer and sensing.