论文标题
量子连贯性作为混乱的签名
Quantum coherence as a signature of chaos
论文作者
论文摘要
我们通过采用源自资源理论框架作为量子混乱的诊断工具来建立量子相干性与量子混乱之间的严格联系。我们在两个不同的级别上量化了这种连接:量子状态和量子通道。在状态层面上,我们展示了混乱的几个量化量子的伪装(或与它们密切相关)。我们通过使用主要化理论的工具来进一步为所有量子相干度量。然后,我们从数值上研究了混乱的VS综合特征状态的相干性,并在大部分频谱中发现了与随机基质理论的良好一致性。在通道级别上,我们表明,相干产生的能力(CGP)是对动态过程平均产生多少相干性产生的量度 - 作为超时订购的相关器(OTOC)的一个子部分出现,这是多体系统中的信息量的量度。通过(不可综合的)横向场模型的数值模拟,我们表明OTOC和CGP以数量相同的方式捕获量子复发。此外,使用随机矩阵理论,我们分析表征了HAAR和高斯合奏的CGP-OTOC连接。最后,我们评论了我们基于连贯的混乱签名与其他诊断诊断的关系,即Loschmidt Echo,OTOC和频谱形式。
We establish a rigorous connection between quantum coherence and quantum chaos by employing coherence measures originating from the resource theory framework as a diagnostic tool for quantum chaos. We quantify this connection at two different levels: quantum states and quantum channels. At the level of states, we show how several well-studied quantifiers of chaos are, in fact, quantum coherence measures in disguise (or closely related to them). We further this connection for all quantum coherence measures by using tools from majorization theory. Then, we numerically study the coherence of chaotic-vs-integrable eigenstates and find excellent agreement with random matrix theory in the bulk of the spectrum. At the level of channels, we show that the coherence-generating power (CGP) -- a measure of how much coherence a dynamical process generates on average -- emerges as a subpart of the out-of-time-ordered correlator (OTOC), a measure of information scrambling in many-body systems. Via numerical simulations of the (nonintegrable) transverse-field Ising model, we show that the OTOC and CGP capture quantum recurrences in quantitatively the same way. Moreover, using random matrix theory, we analytically characterize the CGP-OTOC connection for the Haar and Gaussian ensembles. In closing, we remark on how our coherence-based signatures of chaos relate to other diagnostics, namely the Loschmidt echo, OTOC, and the Spectral Form Factor.