论文标题
历史纠缠熵
History entanglement entropy
论文作者
论文摘要
提出了形式主义来描述纠缠的量子历史及其纠缠熵。我们定义一个历史载体,生活在张量空间中,其基础元素与允许的历史相对应,即具有非变化幅度的历史。幅度是历史向量的组成部分,并包含动态信息。测量序列的概率和崩溃的概率由广义的诞生规则给出:它们均以涉及历史向量的投影和标量产品表示。引入了纠缠的历史状态,并根据历史向量的集合来定义历史密度矩阵。在量子计算电路中取出的两个示例中,明确计算了相应的历史熵(和复合系统的历史纠缠熵)。
A formalism is proposed to describe entangled quantum histories, and their entanglement entropy. We define a history vector, living in a tensor space with basis elements corresponding to the allowed histories, i.e. histories with nonvanishing amplitudes. The amplitudes are the components of the history vector, and contain the dynamical information. Probabilities of measurement sequences, and resulting collapse, are given by generalized Born rules: they are all expressed by means of projections and scalar products involving the history vector. Entangled history states are introduced, and a history density matrix is defined in terms of ensembles of history vectors. The corresponding history entropies (and history entanglement entropies for composite systems) are explicitly computed in two examples taken from quantum computation circuits.