论文标题

在模拟黑洞积聚流的冠状动脉中的逆康普顿冷却

Inverse Compton Cooling in the Coronae of Simulated Black Hole Accretion Flows

论文作者

Kinch, Brooks E., Noble, Scott C., Schnittman, Jeremy D., Krolik, Julian H.

论文摘要

我们提出了一种用于在3D GRMHD模拟的散发,热的电晕区中使用的局部冷却功能的公式。这种新的冷却函数通过考虑电动机中每个细胞中的每个细胞中的相关微物理学,并通过从磁盘表面上的热种子光子通量整合在电动机中,从而计算出由于康普顿散射而导致的冷却速率。该方法假设离子和电子温度相等(1T),或者使用基于实际相关速率方程(Coulomb and Compton)的瞬时平衡方法分别计算(2T)。该方法显示与更详细的射线追踪计算一致,其中大部分冷却发生,但执行成本较小。例如,我们将这些方法应用于$ 10 m_ \ odot $,非旋转黑洞的\ textsc {harm3d}模拟,名义上以1 \%的\%addington值积聚。与\ textsc {harm3d}使用的原始目标 - 温度冷却函数相比,1T和2T方法都会导致电晕的辐射效率提高,并增加电晕中总冷却的比例更大,尤其是在1T情况下。时间平均的后处理表明,这些模拟预测的连续频谱观察与实际X射线二进制数据在质量上相似,尤其是对于1T方法而言,与2T版本相比,它产生了更难的幂律分量($γ= 2.25 $)($γ= 2.53 $)

We present a formulation for a local cooling function to be employed in the diffuse, hot corona region of 3D GRMHD simulations of accreting black holes. This new cooling function calculates the cooling rate due to inverse Compton scattering by considering the relevant microphysics in each cell in the corona and approximating the radiation energy density and Compton temperature there by integrating over the thermal seed photon flux from the disk surface. The method either assumes ion and electron temperatures are equal (1T), or calculates them separately (2T) using an instantaneous equilibrium approach predicated on the actual relevant rate equations (Coulomb and Compton). The method is shown to be consistent with a more detailed ray-tracing calculation where the bulk of the cooling occurs, but is substantially less costly to perform. As an example, we apply these methods to a \textsc{harm3d} simulation of a $10 M_\odot$, non-spinning black hole, accreting at nominally 1\% the Eddington value. Both 1T and 2T approaches lead to increased radiative efficiency and a larger fraction of total cooling in the corona as compared to the original target-temperature cooling function used by \textsc{harm3d}, especially in the 1T case. Time-averaged post-processing reveals that the continuum spectral observations predicted from these simulations are qualitatively similar to actual X-ray binary data, especially so for the 1T approach which yields a harder power-law component ($Γ= 2.25$) compared to the 2T version ($Γ= 2.53$)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源