论文标题

在广义运行和翻滚过程中的位置分布

Position distribution in a generalised run and tumble process

论文作者

Dean, David S., Majumdar, Satya N., Schawe, Hendrik

论文摘要

我们研究了类型$ \ frac {d^n x} {dt^n} = v_0 \,σ(t)$的随机过程,其中$ n> 0 $是一个正整数,$σ(t)= \ pm 1 $代表从一个状态到一个状态的电视噪声,从一个状态到另一个状态到另一个状态到另一个状态$ $ $ $。对于$ n = 1 $,它可以减少到一个维度颗粒的标准运行和翻滚过程。可以在分析上继续进行此过程,包括任何$ n> 0 $,包括非整数值。我们准确地计算了所有$ n> 0 $的时间$ t $的平均平方位移,并在后期增长为$ \ sim t^{2n-1} $,对于$ n> 1/2 $,它将接近$ n <1/2 $的常数。在边缘情况下,$ n = 1/2 $,随着时间的流逝,它的生长非常缓慢,为$ \ sim \ ln t $。因此,该过程在$ n = 1/2 $下进行{\ em局部化}过渡。我们还表明,即使在$ n \ ge 1/2 $的后期,位置分配$ p_n(x,t)$也仍然取决于时间,但是接近$ n <1/2 $的固定时间独立的形式。后期分布的尾部显示出较大的偏差形式,$ p_n(x,t)\ sim \ exp \ left [-γ\,t \,φ_n\ left(\ frac {x} {x} {x^*(x^*(t)} \ right)我们对所有$ n> 0 $分析计算速率函数$φ_n(z)$,并使用重要性采样方法来计算,在它们之间找到了极好的一致性。对于三个特殊值$ n = 1 $,$ n = 2 $和$ n = 1/2 $,我们始终计算位置分布的确切累积生成函数。

We study a class of stochastic processes of the type $\frac{d^n x}{dt^n}= v_0\, σ(t)$ where $n>0$ is a positive integer and $σ(t)=\pm 1$ represents an `active' telegraphic noise that flips from one state to the other with a constant rate $γ$. For $n=1$, it reduces to the standard run and tumble process for active particles in one dimension. This process can be analytically continued to any $n>0$ including non-integer values. We compute exactly the mean squared displacement at time $t$ for all $n>0$ and show that at late times while it grows as $\sim t^{2n-1}$ for $n>1/2$, it approaches a constant for $n<1/2$. In the marginal case $n=1/2$, it grows very slowly with time as $\sim \ln t$. Thus the process undergoes a {\em localisation} transition at $n=1/2$. We also show that the position distribution $p_n(x,t)$ remains time-dependent even at late times for $n\ge 1/2$, but approaches a stationary time-independent form for $n<1/2$. The tails of the position distribution at late times exhibit a large deviation form, $p_n(x,t)\sim \exp\left[-γ\, t\, Φ_n\left(\frac{x}{x^*(t)}\right)\right]$, where $x^*(t)= v_0\, t^n/Γ(n+1)$. We compute the rate function $Φ_n(z)$ analytically for all $n>0$ and also numerically using importance sampling methods, finding excellent agreement between them. For three special values $n=1$, $n=2$ and $n=1/2$ we compute the exact cumulant generating function of the position distribution at all times $t$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源