论文标题
关于代数表面syzygy捆绑的H稳定性的一些评论
Some Remarks on H-stability of syzygy bundle on algebraic surface
论文作者
论文摘要
让$ l $成为全球生成的线条捆绑包,上面是平滑的不可还原的复杂射击表面$ x $。 syzygy捆绑包$ m_ {l} $是评估图的内核$ h^0(l)\ otimes \ Mathcal o_x \ to l $。我们证明了Hirzebruch表面,Del Pezzo表面和Enriques表面的$ M_L $ $ L $稳定性。还获得了$(-K_X)$ - Syzygy捆绑$ m_l $ yel del pezzo表面的稳定性。
Let $L$ be a globally generated line bundle over a smooth irreducible complex projective surface $X$. The syzygy bundle $M_{L}$ is the kernel of the evaluation map $H^0(L)\otimes\mathcal O_X\to L$. We prove the $L$-stability of $M_L$ for Hirzebruch surfaces, del Pezzo surfaces and Enriques surfaces. The $(-K_X)$-stability of syzygy bundles $M_L$ over del Pezzo surfaces is also obtained.