论文标题
基于网格的稀疏自适应降噪策略
Sparse Grids based Adaptive Noise Reduction strategy for Particle-In-Cell schemes
论文作者
论文摘要
我们提出了基于网格的稀疏自适应降噪策略(PIC)模拟。我们的方法是基于依靠稀疏网格而不是常规网格的关键思想,以增加相同总颗粒总数的每个单元的颗粒数量,正如Ricketson和Cerfon中首次引入的那样(Plasma Phys。和Control。融合。59(2),024002)。为此想法采用新的过滤视角,我们构建了该算法,以便可以轻松地集成到高性能大规模的PIC代码库中。与PIC代码通常使用的物理和傅立叶域过滤器不同,我们的方法自动适应网格大小,每个单元格的颗粒数,密度曲线的平滑度和初始采样技术。借助截短的组合技术,我们可以减少针对非对齐和非平滑函数的标准稀疏网格方法的更大基于网格的误差。我们提出了一个基于正式错误分析的启发式措施,以在每个时间步骤中选择最佳截断参数,并开发自然框架以最大程度地减少稀疏PIC模拟中的总误差。我们通过两种测试用例证明了其效率和性能:在二维中的二下不稳定性,以及在penning陷阱中的三维电子动力学。我们的运行时间性能研究表明,与常规PIC相比,我们的新方案可以提供显着的加速和记忆力,以实现电荷密度沉积的可比精度。
We propose a sparse grids based adaptive noise reduction strategy for electrostatic particle-in-cell (PIC) simulations. Our approach is based on the key idea of relying on sparse grids instead of a regular grid in order to increase the number of particles per cell for the same total number of particles, as first introduced in Ricketson and Cerfon (Plasma Phys. and Control. Fusion, 59(2), 024002). Adopting a new filtering perspective for this idea, we construct the algorithm so that it can be easily integrated into high performance large-scale PIC code bases. Unlike the physical and Fourier domain filters typically used in PIC codes, our approach automatically adapts to mesh size, number of particles per cell, smoothness of the density profile and the initial sampling technique. Thanks to the truncated combination technique, we can reduce the larger grid-based error of the standard sparse grids approach for non-aligned and non-smooth functions. We propose a heuristic based on formal error analysis for selecting the optimal truncation parameter at each time step, and develop a natural framework to minimize the total error in sparse PIC simulations. We demonstrate its efficiency and performance by means of two test cases: the diocotron instability in two dimensions, and the three-dimensional electron dynamics in a Penning trap. Our run time performance studies indicate that our new scheme can provide significant speedup and memory reduction as compared to regular PIC for achieving comparable accuracy in the charge density deposition.