论文标题
有条件独立的逻辑
A Bunched Logic for Conditional Independence
论文作者
论文摘要
独立性和有条件的独立性是概率计划中随机变量群体的推理的基本概念。独立性的验证方法仍然是新生的,现有方法无法处理有条件的独立性。我们通过非共同连词扩展了束含义(BI)的逻辑,并提供了基于马尔可夫内核的模型。有条件的独立性可以直接捕获为该模型中的逻辑公式。然后,我们指出马尔可夫内核是分布单元的kleisli箭头,然后我们引入了基于Powerset Monad的第二个模型,并显示了它如何捕获Join依赖性,这是一种从数据库理论中有条件独立性的非稳态类似物。最后,我们开发了一种程序逻辑,用于验证概率计划中的条件独立性。
Independence and conditional independence are fundamental concepts for reasoning about groups of random variables in probabilistic programs. Verification methods for independence are still nascent, and existing methods cannot handle conditional independence. We extend the logic of bunched implications (BI) with a non-commutative conjunction and provide a model based on Markov kernels; conditional independence can be directly captured as a logical formula in this model. Noting that Markov kernels are Kleisli arrows for the distribution monad, we then introduce a second model based on the powerset monad and show how it can capture join dependency, a non-probabilistic analogue of conditional independence from database theory. Finally, we develop a program logic for verifying conditional independence in probabilistic programs.