论文标题

在有限变形时对软介电的挠性电解度进行建模

Modeling flexoelectricity in soft dielectrics at finite deformation

论文作者

Codony, David, Gupta, Prakhar, Marco, Onofre, Arias, Irene

论文摘要

本文开发了均衡方程,这些方程描述了大变形下软电介质中的挠性效应。以前的作品使用混合材料空间特征的柔性耦合张量开发了相关的理论。在这里,我们根据在材料框架中完全定义的挠性张量来制定模型,并具有相同的小型抗曲线算术张量的对称性,并且自然而然地导致了客观的挠性偏振场。能量电位和平衡方程首先是根据变形和极化来表示的,然后根据变形和电势重写,产生了第四阶偏微分方程(PDES)的无约束系统。我们进一步开发了在开放和闭路条件下的几何非线性伸长挠性杆的理论,我们在机械和电动驱动下进行了分析性的悬臂弯曲和屈曲。除了与细长结构有关的简单且明确的模型外,该杆理论还使我们能够使用B-Splines测试我们的一般理论及其数值实现。这种数值实现非常强大,因为它可以处理软挠性材料中的机电不稳定性。

This paper develops the equilibrium equations describing the flexoelectric effect in soft dielectrics under large deformations. Previous works have developed related theories using a flexoelectric coupling tensor of mixed material-spatial character. Here, we formulate the model in terms of a flexoelectric tensor completely defined in the material frame, with the same symmetries of the small-strain flexocoupling tensor and leading naturally to objective flexoelectric polarization fields. The energy potential and equilibrium equations are first expressed in terms of deformation and polarization, and then rewritten in terms of deformation and electric potential, yielding an unconstrained system of fourth order partial differential equations (PDEs). We further develop a theory of geometrically nonlinear extensible flexoelectric rods under open and closed circuit conditions, with which we examine analytically cantilever bending and buckling under mechanical and electrical actuation. Besides being a simple and explicit model pertinent to slender structures, this rod theory also allows us to test our general theory and its numerical implementation using B-splines. This numerical implementation is robust as it handles the electromechanical instabilities in soft flexoelectric materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源