论文标题
丧失了重力浴场连贯性和连贯性保护
Loss of coherence and coherence protection from a graviton bath
论文作者
论文摘要
我们考虑使用重力浴的量子谐波振荡器,并讨论由于物质 - 格拉维顿顶点相互作用而导致物质部门的相干性丧失。在量子场理论框架中工作,我们通过在领先顺序$ \ mathcal {\ sim o}(g)$和$ \ sim \ sim \ Mathcal {o}(c^{ - 2})$的领先顺序$ \ mathcal {\ sim o}(g)(g)$ \ Mathcal {\ sim o}(g)(g)中获得一个主方程。我们发现,反应速率与谐波捕获频率的立方成正比,并且对于没有质量四极杆的系统预期的是自由粒子的消失。此外,我们的重力发射量子模型从经典的谐波振荡器中恢复了已知的经典辐射公式,用于具有较大职业数量的连贯状态。此外,我们发现量子谐波振荡器最终以\ emph {a remph {a remnant coomerence}的稳定状态定居。尽管重力波的经典发射会使谐波系统松散其所有能量,但我们的量子场理论模型不允许数字状态$ \ vert 1 \ rangle $和$ \ vert 0 \ rangle $通过Graviton发射衰减。特别是,数字状态的叠加$ \ frac {1} {\ sqrt {2}}} \ left [\ vert0 \ rangle+\ vert1 \ rangle \ right \ right] $是一个稳定状态,从不折断。
We consider a quantum harmonic oscillator coupled with a graviton bath and discuss the loss of coherence in the matter sector due to the matter-graviton vertex interaction. Working in the quantum-field-theory framework, we obtain a master equation by tracing away the gravitational field at the leading order $\mathcal{\sim O}(G)$ and $\sim\mathcal{O}(c^{-2})$. We find that the decoherence rate is proportional to the cube of the harmonic trapping frequency and vanishes for a free particle, as expected for a system without a mass quadrupole. Furthermore, our quantum model of graviton emission recovers the known classical formula for gravitational radiation from a classical harmonic oscillator for coherent states with a large occupation number. In addition, we find that the quantum harmonic oscillator eventually settles in a steady state with \emph{a remnant coherence} of the ground and first excited states. While classical emission of gravitational waves would make the harmonic system loose all of its energy, our quantum field theory model does not allow the number states $\vert 1\rangle$ and $\vert 0\rangle$ to decay via graviton emission. In particular, the superposition of number states $\frac{1}{\sqrt{2}}\left[\vert0\rangle+\vert1\rangle\right]$ is a steady state and never decoheres.