论文标题

处理交叉链链交易的代数流程方法

An Algebraic-Topological Approach to Processing Cross-Blockchain Transactions

论文作者

Zhao, Dongfang

论文摘要

处理交叉链链交易的最新技术采用一种简单的集中式方法:当区块链上的资产$ x $(例如$ x $ -coins)与区块链$ y $ - y $ --- $ y $ y-Coins上的资产交换时,需要将这些$ x $ coins交换给$ y Middle $ y MIDECE,然后将其交换为Bitcoins(例如BitCoins)。如果单个全局交易涉及两个以上的当事方,则将全局交易分为多个本地两党交易,每个交易遵循上述中央交换协议。不幸的是,通过中央交换方法违反了全球交易的原子量:如果全球交易决定退出,那些本地两党交易(一旦承诺)就无法退缩。从更一般的意义上讲,基于图的(两方)交易的模型几乎不能扩展到交叉链链交易中的任意数量的当事方。 %从为什么到本文中,我们引入了交叉链交易的高级抽象。我们采用\ textIt {抽象简单复杂},这是代数拓扑中广泛研究的数学对象,以代表与区块链交易有关的任意当事方。本质上,全局交易中的每个方都建模为顶点,并且$ n+1 $($ n \ in \ mathbb {z} $,$ n> 0 $)的全球交易构成了$ n $ dipermensional Simplex。尽管这种高级抽象似乎很容易,但我们将展示这种简单的扩展如何导致新的建模方法和协议系列,以更好地处理交叉链链交易。

The state-of-the-art techniques for processing cross-blockchain transactions take a simple centralized approach: when the assets on blockchain $X$, say $X$-coins, are exchanged with the assets on blockchain $Y$---the $Y$-coins, those $X$-coins need to be exchanged to a "middle" medium (such as Bitcoin) that is then exchanged to $Y$-coins. If there are more than two parties involved in a single global transaction, the global transaction is split into multiple local two-party transactions, each of which follows the above central-exchange protocol. Unfortunately, the atomicity of the global transaction is violated with the central-exchange approach: those local two-party transactions, once committed, cannot be rolled back if the global transaction decides to abort. In a more general sense, the graph-based model of (two-party) transactions can hardly be extended to an arbitrary number of parties in a cross-blockchain transaction. %from why to how In this paper, we introduce a higher-level abstraction of cross-blockchain transactions. We adopt the \textit{abstract simplicial complex}, an extensively-studied mathematical object in algebraic topology, to represent an arbitrary number of parties involved in the blockchain transactions. Essentially, each party in the global transaction is modeled as a vertex and the global transaction among $n+1$ ($n \in \mathbb{Z}$, $n > 0$) parties compose a $n$-dimensional simplex. While this higher-level abstraction seems plausibly trivial, we will show how this simple extension leads to a new line of modeling methods and protocols for better processing cross-blockchain transactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源