论文标题
浆果曲率和相关数量的高性能Wannier插值:Wannierberri代码
High performance Wannier interpolation of Berry curvature and related quantities: WannierBerri code
论文作者
论文摘要
Wannier插值是在$ \ Mathbf {K} $点上执行Brillouin区域积分的强大工具,这对于评估诸如固有的异常霍尔电导率或玻璃体传输系数等数量至关重要。但是,新的物理问题和新材料会带来新的数值挑战,并且使用现有代码的计算变得非常昂贵,这通常可以阻止达到所需的准确性。在本文中,我提出了一系列方法,这些方法通过几个数量级提高了Wannier插值的速度。它们包括快速和缓慢的傅立叶变换,明确使用对称性以及递归自适应网格的细化等组合。提出的方法已经在新的Python代码Wannierberri中实施,该代码还旨在作为新现象插值计划的未来开发的便捷平台。
Wannier interpolation is a powerful tool for performing Brillouin zone integrals over dense grids of $\mathbf{k}$ points, which are essential to evaluate such quantities as the intrinsic anomalous Hall conductivity or Boltzmann transport coefficients. However, new physical problems and new materials create new numerical challenges, and computations with the existing codes become very expensive, which often prevents reaching the desired accuracy. In this article, I present a series of methods that boost the speed of Wannier interpolation by several orders of magnitude. They include a combination of fast and slow Fourier transforms, explicit use of symmetries and recursive adaptive grid refinement among others. The proposed methodology has been implemented in the new python code WannierBerri, which also aims to serve as a convenient platform for the future development of interpolation schemes for novel phenomena.