论文标题

通过复发性神经网络的自我监督学习和微观结构进化的预测

Self-Supervised Learning and Prediction of Microstructure Evolution with Recurrent Neural Networks

论文作者

Yang, Kaiqi, Cao, Yifan, Zhang, Youtian, Tang, Ming, Aberg, Daniel, Sadigh, Babak, Zhou, Fei

论文摘要

微观结构演化是理解和利用材料结构 - 性能 - 性能关系的关键方面。建模微观结构演化通常依赖于粗粒模拟,其演化原理由部分微分方程(PDE)描述。在这里,我们证明了卷积复发性神经网络可以学习基本的物理规则,并在预测微观结构现象时取代基于PDE的模拟。神经网受到自我监督的学习训练,并通过模拟几个常见过程的图像序列进行训练,包括平面波传播,晶粒生长,旋律分解和树突状晶体生长。受过训练的网络可以准确地预测微观结构的短期局部动力和长期统计特性,并且能够在时空域中的训练数据集以及配置和参数空间中推断出训练数据集。这种数据驱动的方法在及时步进效率的基于PDE的模拟方面具有显着优势,并提供了一个有用的替代方案,尤其是在确定材料参数或管理PDE时。

Microstructural evolution is a key aspect of understanding and exploiting the structure-property-performance relation of materials. Modeling microstructure evolution usually relies on coarse-grained simulations with evolution principles described by partial differential equations (PDEs). Here we demonstrate that convolutional recurrent neural networks can learn the underlying physical rules and replace PDE-based simulations in the prediction of microstructure phenomena. Neural nets are trained by self-supervised learning with image sequences from simulations of several common processes, including plane wave propagation, grain growth, spinodal decomposition and dendritic crystal growth. The trained networks can accurately predict both short-term local dynamics and long-term statistical properties of microstructures and is capable of extrapolating beyond the training datasets in spatiotemporal domains and configurational and parametric spaces. Such a data-driven approach offers significant advantages over PDE-based simulations in time stepping efficiency and offers a useful alternative especially when the material parameters or governing PDEs are not well determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源