论文标题
IA型超新星的分层贝叶斯SED模型在光学上至近红外
A Hierarchical Bayesian SED Model for Type Ia Supernovae in the Optical to Near-Infrared
论文作者
论文摘要
虽然常规的IA型超新星(SN IA)宇宙学分析主要依赖于静止框架光曲线来确定距离,但SNE IA是近红外(NIR)光中出色的标准蜡烛,这对尘埃灭绝的敏感性明显较小。必须从基于HST,LSST,JWST和RST(包括HST,LSST,JWST和RST)中完全利用当前和未来的SN IA数据集的充分利用当前和未来的SN IA数据集,因此必须完全利用当前和未来的SN IA数据集,因此必须完全利用当前和未来的SN IA数据集。我们为SN IA SED构建了层次结构的贝叶斯模型,从光学到NIR($ b $ to $ h $),或$ 0.35 -1.8 \,μ$ m)。我们将SED建模为具有物理赋予的宿主星系灰尘和固有光谱成分的组合。内在SED随时间和波长的分布是用概率功能主成分和残留功能的协方差建模的。我们通过对灰尘和内在的潜在变量,SED组件和种群超级参数的全局后验分布进行采样,并在附近的79 sne IA的附近样品上训练该模型。使用NIR数据接近最大光的NIR数据的光度距离获得了我们贝叶斯模型的总RMS误差为0.10 mag,而同一样品的0.14 mag,带有snoopy和salt2。共同拟合全球寄宿尘埃法的完整样本的光学和NIR数据,我们发现$ r_v = 2.9 \ pm 0.2 $,与银河系的平均值一致。
While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction. A SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage current and future SN Ia datasets from ground- and space-based telescopes including HST, LSST, JWST, and RST. We construct a hierarchical Bayesian model for SN Ia SEDs, continuous over time and wavelength, from the optical to NIR ($B$ through $H$, or $0.35 -1.8\, μ$m). We model the SED as a combination of physically-distinct host galaxy dust and intrinsic spectral components. The distribution of intrinsic SEDs over time and wavelength is modelled with probabilistic functional principal components and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components, and population hyperparameters. The photometric distances of SNe Ia with NIR data near maximum light obtain a total RMS error of 0.10 mag with our BayeSN model, compared to 0.14 mag with SNooPy and SALT2 for the same sample. Jointly fitting the optical and NIR data of the full sample for a global host dust law, we find $R_V = 2.9 \pm 0.2$, consistent with the Milky Way average.