论文标题

$ p $组的Schur乘数指数具有良好功率结构的引理

A lemma on the exponent of Schur multiplier of $p$ groups with good power structure

论文作者

Antony, A. E, Komma, P., Thomas, V. Z.

论文摘要

在本说明中,我们简短证明了众所周知的结果,即Schur乘数$ \ m $的指数将有限$ \ p $ - 最大级别的$ \ g $的指数分配给了$ \ g $的指数。此外,对于有限$ \ p $ -group $ \ g $满足$ \ g^{\ p^2} \ subsetγ_ {\ p}(\ g)$,以及$ 3 $ - 类$ 5 $的$ 3 $ groups。我们通过证明普遍的引理来做到这一点,并表明这三类组满足了我们的引理假设。

In this note, we give short proofs of the well-known results that the exponent of the Schur multiplier $\M$ divides the exponent of $\G$ for finite $\p$-groups of maximal class and potent $\p$-groups. Moreover, we prove the same for a finite $\p$-group $\G$ satisfying $\G^{\p^2}\subset γ_{\p}(\G)$, and for $3$-groups of class $5$. We do this by proving a general lemma, and show that these three classes of groups satisfy the hypothesis of our lemma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源