论文标题

行星系统的X射线研究:2020年际调查白皮书

X-ray Studies of Planetary Systems: A 2020 Decadal Survey White Paper

论文作者

Hong, Jaesub, Romaine, Suzanne, Nittler, Larry, Elvis, Martin, Crawford, Ian, Branduardi-Raymont, Graziella, Rim, Lucy, Wolk, Scott

论文摘要

无论是从小行星和卫星发出的荧光发射,彗星的太阳风电荷交换,从火星逃脱,金星上的茶反应,土星上的Sprite Lighting还是Jovian磁层中的IO等离子体圆环,太阳能系统中的太阳能系统令人惊讶地丰富,并且在X射线射线发射的物体中具有出人意料的富含。各种行星体的组成是行星科学的基本兴趣,为目标体的形成和进化历史提供了线索,整个太阳系。由太阳能X射线或能量离子触发的X射线荧光(XRF)线是原子能水平的固有的,并具有发射体的元素组成的明确特征。到目前为止,所有遥感XRF光谱仪均在行星轨道轨道上使用的仪器都是准直的仪器,具有有限的空间分辨率,并且许多人使用了能量分辨率差的古老X射线检测器。聚焦X射线光学器件提供了真实的光谱成像,并广泛用于天体物理任务中,但是直到现在,它们的质量和体积对于资源有限的位于原地行星任务都太大了。 Recent advances in X-ray instrumentation such as the Micro-Pore Optics used on the BepiColombo X-ray instrument (Fraser et al., 2010), Miniature X-ray Optics (Hong et al., 2016) and highly radiation tolerant CMOS X-ray sensors (e.g., Kenter et al., 2012) enable compact, yet powerful, truly focusing X-ray Imaging Spectrometers.这样的工具将实现对空间分辨率更好的行星体的组成测量,从而在行星科学中打开了一个大型的新发现空间,从而大大增强了我们对不同行星体的性质和起源的理解。在这里,我们讨论了XRF在太阳系中解决关键科学问题的许多示例。

Whether it is fluorescence emission from asteroids and moons, solar wind charge exchange from comets, exospheric escape from Mars, pion reactions on Venus, sprite lighting on Saturn, or the Io plasma torus in the Jovian magnetosphere, the Solar System is surprisingly rich and diverse in X-ray emitting objects. The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the solar system as a whole. X-ray fluorescence (XRF) lines, triggered either by solar X-rays or energetic ions, are intrinsic to atomic energy levels and carry an unambiguous signature of the elemental composition of the emitting bodies. All remote-sensing XRF spectrometers used so far on planetary orbiters have been collimated instruments, with limited achievable spatial resolution, and many have used archaic X-ray detectors with poor energy resolution. Focusing X-ray optics provide true spectroscopic imaging and are used widely in astrophysics missions, but until now their mass and volume have been too large for resource-limited in-situ planetary missions. Recent advances in X-ray instrumentation such as the Micro-Pore Optics used on the BepiColombo X-ray instrument (Fraser et al., 2010), Miniature X-ray Optics (Hong et al., 2016) and highly radiation tolerant CMOS X-ray sensors (e.g., Kenter et al., 2012) enable compact, yet powerful, truly focusing X-ray Imaging Spectrometers. Such instruments will enable compositional measurements of planetary bodies with much better spatial resolution and thus open a large new discovery space in planetary science, greatly enhancing our understanding of the nature and origin of diverse planetary bodies. Here, we discuss many examples of the power of XRF to address key science questions across the solar system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源