论文标题

剪切薄粘弹性管流和彼得罗夫 - 盖尔金实施中的扰动对称性

Perturbation symmetries in shear-thinning viscoelastic pipe flows and the Petrov-Galerkin implementation

论文作者

Malik, M, Skote, Martin, Bouffanais, Roland

论文摘要

在有限延伸的非线性弹性模型下,具有peterlin近似(FENE-P)的层状剪切粘膜流量的扰动显示出依赖于Azimuthal Wave Wave fave fave faver-number-numberber,$ n $ n $ n $ n $ n $ n $。该分析有助于使中心线的方程式管理系统正规化,并允许对三维扰动的完整稳定性分析,以$ n $的一般整数值,这对Fene-P模型仍然是一个挑战。这里显示的是,牛顿对应物的速度和压力场的对称性和分析行为都保存在这种流程中,原因阐明了原因。对于$ | n | = 1 $,端到端聚合物矢量的轴向组件与径向或方位角组件之间的相关性的扰动表现出类似于与中心线接近的速度扰动的行为,并被追溯到轴向牵引相对于ezimuthertional方向的轴向牵引力均匀性。对于所有$ n $的值,在中心线上,聚合物链的端到端长度的波动消失了。使用启发式方法以两种单独的方式证明了对构象张量的扰动的ANSATZES到达这里:Frobenius方法,以及一种利用傅立叶分析中观察结果的方法。我们还揭示了在消失的聚合物粘度限制的情况下存在具有微不足道速度的聚合物的自然模式。这些模式的复杂频谱与径向分层是连续的。最后,使用Petrov-Galerkin光谱方案实施了Ansatzes。

The perturbations of the laminar shear-thinning viscoelastic pipe flow under Finitely Extensible Nonlinear Elastic model with Peterlin approximation (FENE-P) are shown to exhibit leading-order power-law behaviours, and the expected odd-even parities with respect to the radial coordinate that depend on the azimuthal wave\-number, $n$. The analysis helps regularizing the governing system of equations at the centreline, and allows for a complete stability analysis of three-dimensional perturbations for a general integer value of $n$, which has hitherto remained a challenge for FENE-P models. It is shown here that the symmetry and analytic behaviours of the velocity and pressure fields of the Newtonian counterpart are both preserved in this flow, and the reason is elucidated. For $|n|=1$, the perturbations to the correlations between the axial component and the radial or azimuthal components of the end-to-end polymer vector exhibit behaviour similar to that of the velocity perturbations close to the centreline, and are traced to the uniformity of axial traction with respect to the azimuthal direction. For all values of $n$, the fluctuation to the end-to-end length of the polymer chain vanishes at the centreline. The ansatzes for the perturbations to the components of conformation tensor arrived here, using heuristics, are later proved in two separate ways: Frobenius method, and a method that utilizes observations from Fourier analysis. We also reveal the existence of natural modes of polymers with trivial velocity perturbations in the limit of vanishing polymer viscosity. The complex frequency spectrum of these modes is continuous with radial stratification. Finally, the ansatzes are implemented using a Petrov--Galerkin spectral scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源