论文标题
稳定的低量张量分解以压缩卷积神经网络
Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network
论文作者
论文摘要
大多数最先进的深神经网络被过度参数化,并表现出高度的计算成本。解决此问题的一种直接方法是用其低级张量近似值替换卷积内核,而规范的多层张量分解是最适合的模型之一。但是,通过数值优化算法拟合卷积张量通常会遇到不同的组件,即极大的排名一张量,但相互取消。这种堕落性通常会导致神经网络微调的不可解剖结果和数值不稳定性。本文是卷积内核张量分解中的退化性的第一项研究。我们提出了一种新颖的方法,该方法可以稳定卷积内核的低级别近似值并确保有效压缩,同时保留神经网络的高质量性能。我们评估了对图像分类的流行CNN体系结构的方法,并表明我们的方法会导致精度降低得多,并提供一致的性能。
Most state of the art deep neural networks are overparameterized and exhibit a high computational cost. A straightforward approach to this problem is to replace convolutional kernels with its low-rank tensor approximations, whereas the Canonical Polyadic tensor Decomposition is one of the most suited models. However, fitting the convolutional tensors by numerical optimization algorithms often encounters diverging components, i.e., extremely large rank-one tensors but canceling each other. Such degeneracy often causes the non-interpretable result and numerical instability for the neural network fine-tuning. This paper is the first study on degeneracy in the tensor decomposition of convolutional kernels. We present a novel method, which can stabilize the low-rank approximation of convolutional kernels and ensure efficient compression while preserving the high-quality performance of the neural networks. We evaluate our approach on popular CNN architectures for image classification and show that our method results in much lower accuracy degradation and provides consistent performance.