论文标题

关于连续热力学扩散通量的结构 - 一种新颖的闭合方案及其与麦克斯韦 - 斯特凡的关系和菲克·加入的方法

On the structure of continuum thermodynamical diffusion fluxes -- A novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach

论文作者

Bothe, Dieter, Druet, Pierre-Etienne

论文摘要

本文在不可逆过程的热力学框架内重新审视了多组分扩散的建模。我们简要回顾了两种众所周知的主要方法,从而导致通用的Fick-Onsager多组分扩散通量或广义的Maxwell-Stefan方程。后一种方法的优点是,所产生的通量与非元质量密度的非阴性和非分类的麦克斯韦 - 斯特凡扩散性一致。另一方面,这种方法需要计算昂贵的矩阵反转,因为仅给出了通量。我们提出并讨论了一种新颖,更直接的封闭,避免了麦克斯韦 - 斯坦方程的反转。结果表明,所有三个封闭实际上在浓度阳性的自然需求下都是等效的,因此揭示了连续体热力学扩散通量的一般结构。作为一种特殊情况,新的闭合还产生了核心 - 基因分节扩散模型,在该模型中,只有这些交叉效应是保证与总质量保护一致的必要条件,以及扩散率的组成依赖性。事实证明,这种核心 - 核对管的封闭为从二进制混合物到一般多组分情况的深色方程的最新扩展提供了严格的基础。作为我们研究的结果,我们还解决了与多组分热力学或菲奇式扩散系数有关的不同问题。我们严格地表明,通常第二定律需要张量和操作员而不是标量扩散性的阳性特性。

This paper revisits the modeling of multicomponent diffusion within the framework of thermodynamics of irreversible processes. We briefly review the two well-known main approaches, leading to the generalized Fick-Onsager multicomponent diffusion fluxes or to the generalized Maxwell-Stefan equations. The latter approach has the advantage that the resulting fluxes are consistent with non-negativity of the partial mass densities for non-singular and non-degenerate Maxwell-Stefan diffusivities. On the other hand, this approach requires computationally expensive matrix inversions since the fluxes are only implicitly given. We propose and discuss a novel and more direct closure which avoids the inversion of the Maxwell-Stefan equations. It is shown that all three closures are actually equivalent under the natural requirement of positivity for the concentrations, thus revealing the general structure of continuum thermodynamical diffusion fluxes. As a special case, the new closure also gives rise to a core-diagonal diffusion model in which only those cross-effects are present that are necessary to guarantee consistency with total mass conservation, plus a compositional dependence of the diffusivity. This core-diagonal closure turns out to provide a rigorous fundament for recent extensions of the Darken equation from binary mixtures to the general multicomponent case. As an outcome of our investigation, we also address different questions related to the sign of multicomponent thermodynamic or Fickian diffusion coefficients. We show rigorously that in general the second law requires positivity properties for tensors and operators rather than for scalar diffusivities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源