论文标题
用于分析AU/MOS2 Schottky屏障设备的高斯热发射发射模型
A Gaussian Thermionic Emission Model for Analysis of Au/MoS2 Schottky Barrier Devices
论文作者
论文摘要
在金属/TMDC界面上,索特基屏障不均匀性将会影响设备性能。但是,由于大多数技术在分析工具的斑点上的平均值或用于电气I-V测量值测量的整个设备,因此很难考虑到界面不均匀性的分布。通常使用的模型来提取Schottky屏障高度(SBH)忽视或无法解释这种不均匀性,这可能导致提取不正确的SBH和Richardson Stonstants。在这里,我们表明,高斯修改的热发射模型为Van der waals Au/p-MOS2接口的实验I-V-T数据提供了最佳拟合,并允许原始区域有缺陷区域的SBH进行反卷积。通过在宏观I-V-T分析中纳入高斯分布的SBH,我们证明,由于缺陷而引起的界面不均匀性被解变并与对设备对设备行为的影响良好相关,从室温范围从300 k下降到120 K的宽度温度范围。 SBH具有纳米镜技术的结果,弹道孔发射显微镜(BHEM)。使用BHEM获得的结果与从高斯改良的热发射发射模型中提取的原始AU/P-MOS2 SBH一致。我们的发现表明,在I-V-T数据分析中包含Schottky障碍不均匀性对于阐明缺陷的影响(例如晶界,金属杂质等)至关重要,从而对设备行为的影响。我们还发现,理查森常数是一种通常仅视为拟合常数的材料特异性常数,是检查传输模型有效性的重要参数。
Schottky barrier inhomogeneities are expected at the metal/TMDC interface and this can impact device performance. However, it is difficult to account for the distribution of interface inhomogeneity as most techniques average over the spot-area of the analytical tool, or the entire device measured for electrical I-V measurements. Commonly used models to extract Schottky barrier heights (SBH) neglect or fail to account for such inhomogeneities, which can lead to the extraction of incorrect SBH and Richardson constants. Here, we show that a gaussian modified thermionic emission model gives the best fit to experimental I-V-T data of van der Waals Au/p-MoS2 interfaces and allow the deconvolution of the SBH of the defective regions from the pristine region. By the inclusion of a gaussian distributed SBH in the macroscopic I-V-T analysis, we demonstrate that interface inhomogeneities due to defects are deconvoluted and well correlated to the impact on the device behavior across a wide temperature range from room temperature of 300 K down to 120 K. We verified the gaussian thermionic model across two different types of p-MoS2 (geological and synthetic), and finally compared the macroscopic SBH with the results of a nanoscopic technique, ballistic hole emission microscopy (BHEM). The results obtained using BHEM were consistent with the pristine Au/p-MoS2 SBH extracted from the gaussian modified thermionic emission model over hundreds of nanometers. Our findings show that the inclusion of Schottky barrier inhomogeneities in the analysis of I-V-T data is important to elucidate the impact of defects (e.g. grain boundaries, metallic impurities, etc.) and hence their influence on device behavior. We also find that the Richardson constant, a material specific constant typically treated as merely a fitting constant, is an important parameter to check for the validity of the transport model.