论文标题
关于确切三角形的良好形态
On good morphisms of exact triangles
论文作者
论文摘要
在三角类别中,始终存在Cofibre填充。内曼(Neeman)表明,总是至少有一个“良好”填充,即,一个映射锥是准确的。 Verdier在他的$ 4 \ Times 4 $引理的证明中构建了特定表格的填充,我们称之为“ Verdier Good”。我们表明,对于确切三角形的几类态度,善良和verdier的概念同意。我们证明了(verdier)良好的填充物来证明通勤正方形的提升标准。利用我们在良好的填充效果上的结果,我们还证明了同型笛卡尔正方形的粘贴引理。
In a triangulated category, cofibre fill-ins always exist. Neeman showed that there is always at least one "good" fill-in, i.e., one whose mapping cone is exact. Verdier constructed a fill-in of a particular form in his proof of the $4 \times 4$ lemma, which we call "Verdier good". We show that for several classes of morphisms of exact triangles, the notions of good and Verdier good agree. We prove a lifting criterion for commutative squares in terms of (Verdier) good fill-ins. Using our results on good fill-ins, we also prove a pasting lemma for homotopy cartesian squares.