论文标题
时钟和计量学的同步:基于多个时间尺度的扰动分析
Synchronization of clocks and metronomes:A perturbation analysis based on multiple timescales
论文作者
论文摘要
1665年,惠根(Huygens)观察到,从同一板上悬挂的两个摆时钟在数百次挥杆后在反心中同步。另一方面,使用在可移动平台上的监测器进行的现代实验表明,它们通常倾向于在相位而不是反相同步。在这里,我们在摆钟和监测工程学模型中研究了期内和反相同步,并使用扰动理论的工具分析了它们的长期动态。具体而言,我们利用各个摆的快速振荡与振幅和相的调整较慢之间的时间尺度分离。通过适当缩放方程并应用多个时间尺度的方法,我们为反相或相位内同步稳定或两者都稳定的参数空间中的制度提供了明确的公式。尽管这种扰动分析在非线性科学的其他方面是标准的,但它在Huygens的时钟背景下很少被应用。我们方法的异常特征包括其对逃生机制的处理,直至立方顺序的小角度近似以及两次和三个时间的渐近分析。
In 1665, Huygens observed that two pendulum clocks hanging from the same board became synchronized in antiphase after hundreds of swings. On the other hand, modern experiments with metronomes placed on a movable platform show that they often tend to synchronize in phase, not antiphase. Here we study both in-phase and antiphase synchronization in a model of pendulum clocks and metronomes and analyze their long-term dynamics with the tools of perturbation theory. Specifically, we exploit the separation of timescales between the fast oscillations of the individual pendulums and the much slower adjustments of their amplitudes and phases. By scaling the equations appropriately and applying the method of multiple timescales, we derive explicit formulas for the regimes in parameter space where either antiphase or in-phase synchronization are stable, or where both are stable. Although this sort of perturbative analysis is standard in other parts of nonlinear science, it has been applied surprisingly rarely in the context of Huygens's clocks. Unusual features of our approach include its treatment of the escapement mechanism, a small-angle approximation up to cubic order, and both a two- and three-timescale asymptotic analysis.