论文标题

混合甘露的竞争分配

Competitive Allocation of a Mixed Manna

论文作者

Chaudhury, Bhaskar Ray, Garg, Jugal, McGlaughlin, Peter, Mehta, Ruta

论文摘要

我们研究了在可分离的分段线性凹面(SPLC)实用程序下分配混合甘露的公平分裂问题。混合的甘露包含每个人都喜欢和不喜欢的商品,以及某些人喜欢和其他人不喜欢的物品。 Bogomolnaia等人的开创性工作。 [计量经济学17]争论为什么分配混合甘露比好或坏甘露更复杂,为什么竞争平衡是最好的机制。它们还提供了平衡的存在并建立其特殊的特性(例如,即使在线性实用程序下,非凸和断开的平衡集),但留下了计算平衡开放的问题。即使仅在线性公用事业下,这个问题仍然无法解决。 我们的主要结果是一种基于Lemke在SPLC实用程序下计算混合甘露的竞争分配的方案,这是一种类似单纯的算法,这是线性的严格概括。随机生成的实例的实验结果表明,我们的算法在实践中会很快。对于良好的甘露而言,该问题被称为ppad-hard,对于坏甘露而言,我们也显示出类似的结果。鉴于这些PPAD硬度结果,设计这样的算法是已知的唯一非汉堡(非数量)选项,例如,经典的Lemke-Howson算法(1964年)在实践中,计算2件游戏中最高次数最高的Algorithm中最宽容的nash平衡是计算NASH平衡的一种。 我们的算法还产生了一些新的结构特性,作为简单的推论。我们获得了更通用的环境,PPAD中问题的成员身份,有理价值解决方案和奇数解决方案属性的(建设性)证明。最后一个特性还解决了Bogomolnaia等人的猜想。在肯定。

We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica'17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemke's scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源