论文标题

声波的染色体加热的观察性研究

Observational study of chromospheric heating by acoustic waves

论文作者

Abbasvand, V., Sobotka, M., Švanda, M., Heinzel, P., Rivas, Marta García, Denker, C., Balthasar, H., Verma, M., Kontogiannis, I., Koza, J., Korda, D., Kuckein, C.

论文摘要

目标。为了研究声学和磁性波波在加热太阳能球层中的作用,通过比较沉积的声学通量与总综合辐射损耗来分析强染色线的观测。 方法。在CA II 854.2 nm和H-Alpha线中观察到静息和弱型区域,并在10月3日的1.6毫米Goode Solar望远镜(GST)和H-Alpha和H-Beta线上,带有H-Alpha和H-beta线,带有echelle plepsprograph to Vacuim theessesssesssessesssesscope(VITTES),在1.6毫米Goode Solar Teescope(GST)上观察到了1.6 m Goode Solar望远镜(GST)和H-Alpha和H-Beta线。在高达20 MHz的频率下沉积的声通量来自在线中心和机翼中观察到的多普勒速度。辐射损失是通过一组缩放的非LTE 1D静水压半经验模型来计算的,该模型通过将合成拟合到观察到的线谱而获得。 结果。在中部染色体中(H = 1000-1400 km),辐射损失可以通过安静的阳性区域中沉积的声能通量完全平衡。在上染色体(H> 1400 km)中,与安静的散发性损失和板块区域的辐射损失相比,沉积的声通量很小。确定沉积声通量量的关键参数是在给定高度下的气体密度。 结论。声学通量有效地沉积在中部染色体中,那里的气体密度足够高。在这些层中,约90%的可用声能通量沉积在这些层中,因此这是导致中铬球辐射损失的主要因素。在上染色体上,沉积的声通量太低,因此其他加热机制必须作用以平衡辐射冷却。

Aims. To investigate the role of acoustic and magneto-acoustic waves in heating the solar chromosphere, observations in strong chromospheric lines are analyzed by comparing the deposited acoustic-energy flux with the total integrated radiative losses. Methods. Quiet-Sun and weak-plage regions were observed in the Ca II 854.2 nm and H-alpha lines with the Fast Imaging Solar Spectrograph (FISS) at the 1.6-m Goode Solar Telescope (GST) on 2019 October 3 and in the H-alpha and H-beta lines with the echelle spectrograph attached to the Vacuum Tower Telescope (VTT) on 2018 December 11 and 2019 June 6. The deposited acoustic energy flux at frequencies up to 20 mHz was derived from Doppler velocities observed in line centers and wings. Radiative losses were computed by means of a set of scaled non-LTE 1D hydrostatic semi-empirical models obtained by fitting synthetic to observed line profiles. Results. In the middle chromosphere (h = 1000-1400 km), the radiative losses can be fully balanced by the deposited acoustic energy flux in a quiet-Sun region. In the upper chromosphere (h > 1400 km), the deposited acoustic flux is small compared to the radiative losses in quiet as well as in plage regions. The crucial parameter determining the amount of deposited acoustic flux is the gas density at a given height. Conclusions. The acoustic energy flux is efficiently deposited in the middle chromosphere, where the density of gas is sufficiently high. About 90% of the available acoustic energy flux in the quiet-Sun region is deposited in these layers, and thus it is a major contributor to the radiative losses of the middle chromosphere. In the upper chromosphere, the deposited acoustic flux is too low, so that other heating mechanisms have to act to balance the radiative cooling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源