论文标题
Donaldson-Thomas不变长2拖鞋
Donaldson-Thomas invariants of length 2 flops
论文作者
论文摘要
我们开发了三倍拖鞋的精致唐纳森 - 托马斯理论的理论方面,并使用它们来确定所有DT不变式的无限无限家族,长度为2 flopping收缩。我们的结果表明,Pandharipande-Thomas在这种情况下的强大理性猜想的精致版本,而且精制的DT不变性也不会对失败进行分类。我们的主要创新是倾斜理论的应用来更好地了解这些空间的稳定性条件和循环a-侵蚀性理论。在可能的情况下,我们在动机环境中工作,但我们还计算了中间的改进,例如混合霍奇结构。
We develop theoretical aspects of refined Donaldson-Thomas theory for threefold flops, and use these to determine all DT invariants for a doubly infinite family of length 2 flopping contractions. Our results show that a refined version of the strong-rationality conjecture of Pandharipande-Thomas holds in this setting, and also that refined DT invariants do not classify flops. Our main innovation is the application of tilting theory to better understand the stability conditions and cyclic A-infinity-deformation theory of these spaces. Where possible we work in the motivic setting, but we also compute intermediary refinements, such as mixed Hodge structures.