论文标题
离散的傅立叶雅各比变换
Discrete Fourier-Jacobi transform
论文作者
论文摘要
引入并研究了经典傅里叶 - 雅各比变换的离散类似物。它涉及串联和积分,相对于高斯超几何函数的参数$ {} _ 2f_1(a+in/2,a -in/2; \ c; -x^2),\ x> 0,\ x> 0,n \ in \ in \ mathbb {n},a,c> 0,i $是想象中的单位。建立了适用于这些系列和积分的合适函数和序列的相应反转公式。
Discrete analogs of the classical Fourier-Jacobi transform are introduced and investigated. It involves series and integrals with respect to parameters of the Gauss hypergeometric function ${}_2F_1(a+in/2,a-in/2;\ c; -x^2 ), \ x >0, n \in \mathbb{N}, a,c > 0, i $ is the imaginary unit. The corresponding inversion formulas for suitable functions and sequences in terms of these series and integrals are established.