论文标题
超导人工原子的电子搁架
Electron shelving of a superconducting artificial atom
论文作者
论文摘要
将固定量子位与传播光子进行接口是量子技术的基本问题。腔量子电动力学(CQED)以遥不可及的腔模式的形式调用了介体自由度,其适应超导电路(CQED)被证明是非常富有成效的。腔都可以阻止量子排放,并且可以对量子状态进行分散读数。然而,使用原子钟更可能具有更直接的(无洞)界面,其中轨道循环过渡可以根据超精细或四杆值的状态散射光子。这种条件荧光现象最初称为“电子搁架”,是许多量子信息平台的基石,包括被困的离子,固态缺陷和半导体量子点。在这里,我们将搁架想法应用于电路原子,并演示了放置在匹配的一维波指导中的磁通量的条件荧光读数。每91 ns以量子态基态下,循环地面和第三激发状态之间的非计算转变会产生微波光子,而量子量相干时间超过50 US。读数具有内置的量子非隔离性能,与四级光学抽水模型一致的100多个荧光循环。我们的结果引入了CQED的资源有效替代品。它还为波导QED的生长工具箱添加了最先进的量子内存。
Interfacing stationary qubits with propagating photons is a fundamental problem in quantum technology. Cavity quantum electrodynamics (CQED) invokes a mediator degree of freedom in the form of a far-detuned cavity mode, the adaptation of which to superconducting circuits (cQED) proved remarkably fruitful. The cavity both blocks the qubit emission and it enables a dispersive readout of the qubit state. Yet, a more direct (cavityless) interface is possible with atomic clocks, in which an orbital cycling transition can scatter photons depending on the state of a hyperfine or quadrupole qubit transition. Originally termed "electron shelving", such a conditional fluorescence phenomenon is the cornerstone of many quantum information platforms, including trapped ions, solid state defects, and semiconductor quantum dots. Here we apply the shelving idea to circuit atoms and demonstrate a conditional fluorescence readout of fluxonium qubit placed inside a matched one-dimensional waveguide. Cycling the non-computational transition between ground and third excited states produces a microwave photon every 91 ns conditioned on the qubit ground state, while the qubit coherence time exceeds 50 us. The readout has a built-in quantum non-demolition property, allowing over 100 fluorescence cycles in agreement with a four-level optical pumping model. Our result introduces a resource-efficient alternative to cQED. It also adds a state-of-the-art quantum memory to the growing toolbox of waveguide QED.