论文标题

有限体积中相对磁性螺旋的添加性

Additivity of relative magnetic helicity in finite volumes

论文作者

Valori, Gherardo, Démoulin, Pascal, Pariat, Etienne, Yeates, Anthony, Moraitis, Kostas, Linan, Luis

论文摘要

即使存在中等电阻率,相对磁性螺旋度也可以通过磁氢动力学演化来保存。因此,它通常被称为对复杂系统中等离子体动力学演变的最相关的约束,例如太阳和恒星发电机,光球磁通出现,太阳喷发和实验室等离子体中的放松过程。然而,这样的研究通常间接暗示给定空间结构域中的相对磁性螺旋性可以在代数上分为组成的亚卷积的螺旋贡献,即,它是添加剂。有限的非常具体的应用程序表明事实并非如此。理解相对磁性螺旋性的不添加性的进展需要删除限制性假设,而有利于一般形式主义,在理论研究和数值应用中都可以使用。我们得出了分析量规不变的表达,以分配连续有限体积之间的相对磁性螺旋性,而没有对体积和界面形状或使用的仪表的任何假设。有限体积中相对磁性螺旋的非促进性在最一般的,规格的形式主义中得到证明,并通过数值验证。采用了更多限制性的假设来得出已知的特定近似值,从而产生了添加性问题的统一观点。例如,嵌入在电势场中的通量绳的情况表明,分区方程中的非添加性项通常是不可忽略的。相对的螺旋分区公式可以应用于数值模拟,以精确量化非依性对复杂物理过程全球螺旋性预算的影响。

Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint to the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, i.e., that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. Progress in understanding the non-additivity of relative magnetic helicity requires removal of restrictive assumptions in favour of a general formalism that can be used both in theoretical investigations as well as in numerical applications. We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite-volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. The non-additivity of relative magnetic helicity in finite volumes is proven in the most general, gauge-invariant formalism, and verified numerically. More restrictive assumptions are adopted to derive known specific approximations, yielding a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the non-additivity term in the partition equation is, in general, non-negligible. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of non-additivity on global helicity budgets of complex physical processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源