论文标题

非平衡环境中的非马克维亚Qubit动态

Non-Markovian qubit dynamics in nonequilibrium environments

论文作者

Cai, Xiangji

论文摘要

从理论上讲,我们研究了Qubit系统的非马克维亚动力学,该动力学与具有非平稳性和非马克维亚统计特性的非平衡环境结合在一起。单个Qubit系统的降低密度矩阵满足了封闭的三阶微分方程,并考虑了所有高阶环境相关性,并且两个Qubit System的降低密度矩阵可以用单个Qubit Kraus操作员的张量产物表示为Kraus表示。我们得出了两个量子系统的纠缠和非局部性之间的关系,这两者都与反谐波函数紧密相关。我们确定了分流函数的阈值值,以确保当两个量子系统最初在复合铃状状态和扩展的Werner状态中制备时,在给定的进化时间中的并发和非内置量子相关的存在。结果表明,环境非平稳性特征可以抑制分离性和分离动力学,并可以减少非马克维亚动力学制度中的连贯性和纠缠复兴。此外,可以表明,环境非马克维亚特征可以分别增强单个反谐解动力学和两个量子脱机动力学中的纠缠复兴中的相干复兴。此外,环境非组织和非马克维亚特征可以增强两个量子系统的非局部性。

We theoretically study the non-Markovian dynamics of qubit systems coupled to nonequilibrium environments with nonstationary and non-Markovian statistical properties. The reduced density matrix of the single qubit system satisfies a closed third-order differential equation with all the higher-order environmental correlations taken into account and the reduced density matrix of the two qubit system can be expressed as the Kraus representation in terms of the tensor products of the single qubit Kraus operators. We derive the relation between the entanglement and nonlocality of the two qubit system which are both closely associated with the decoherence function. We identify the threshold values of the decoherence function to ensure the existences of the concurrence and nonlocal quantum correlations for a given evolution time when the two qubit system is initially prepared in the composite Bell states and the extended Werner states, respectively. It is shown that the environmental nonstationary feature can suppress the decoherence and disentanglement dynamics and can reduce the coherence and entanglement revivals in non-Markovian dynamics regime. In addition, it is shown that the environmental non-Markovian feature can enhance the coherence revivals in the single decoherence dynamics and the entanglement revivals in the two qubit disentanglement dynamics, respectively. Furthermore, the environmental nonstationary and non-Markovian features can enhance the nonlocality of the two qubit system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源