论文标题
固定点理论和囊外2组的Balmer光谱
Chromatic fixed point theory and the Balmer spectrum for extraspecial 2-groups
论文作者
论文摘要
在1940年代初期,P.A.Smith表明,如果有限的P组G在有限的复合物上作用于Mod $ p $ cacyclic,那么其固定点X^g的空间也将是mod pcyclic。 在他们最近对白皮稳定同型理论的Balmer谱的研究中,Balmer和Sanders研究了该陈述的彩色版本,并提出了一个问题:给定H <g和n,最小的r是什么,以至于X^h在(N+R)Th Morava K-khory中是Acyclic,那么X^g是X^g,那么X^g必须在n n nth Morava中使用X^g-k-k-k-theore? Barthel等人然后在G是Abelian时回答了这一点,通过为这些“蓝移”数字找到一般的下层和上限,这些数字在Abelian案件中一致。 在我们的论文中,我们首先证明了史密斯定理的这些潜在的色版本相当于1952年E.E. Floyd定理的色版本,该版本通过同源性维度的界限代替了无效性,因此适用于所有有限的G空间。这在色度固定点理论中解锁了新技术和应用。 在一个方向上,我们能够使用经典的构造和表示理论来搜索蓝移数下限。我们提供了已知的下限定理的简单新证明,然后获得有关非阿比尔2组的第一个结果,这些结果从先前已知的结果中不遵循。特别是,我们能够确定所有蓝移数的所有蓝移数。 作为新应用程序的样本,我们为5维WU歧管的互动提供了新的结果,并计算了使用C_4色度弗洛伊德定理的100维真实Grassmanian的Mod 2 K理论。
In the early 1940's, P.A.Smith showed that if a finite p-group G acts on a finite complex X that is mod $p$ acyclic, then its space of fixed points, X^G, will also be mod p acyclic. In their recent study of the Balmer spectrum of equivariant stable homotopy theory, Balmer and Sanders were led to study chromatic versions of this statement, with the question: given H<G and n, what is the smallest r such that if X^H is acyclic in the (n+r)th Morava K-theory, then X^G must be acyclic in the nth Morava K-theory? Barthel et.al. then answered this when G is abelian, by finding general lower and upper bounds for these `blue shift' numbers which agree in the abelian case. In our paper, we first prove that these potential chromatic versions of Smith's theorem are equivalent to chromatic versions of a 1952 theorem of E.E.Floyd, which replaces acyclicity by bounds on dimensions of homology, and thus applies to all finite G-spaces. This unlocks new techniques and applications in chromatic fixed point theory. In one direction, we are able to use classic constructions and representation theory to search for blue shift number lower bounds. We give a simple new proof of the known lower bound theorem, and then get the first results about nonabelian 2-groups that don't follow from previously known results. In particular, we are able to determine all blue shift numbers for extraspecial 2-groups. As samples of new applications, we offer a new result about involutions on the 5-dimensional Wu manifold, and a calculation of the mod 2 K-theory of a 100 dimensional real Grassmanian that uses a C_4 chromatic Floyd theorem.