论文标题

在线$ k $ - 树木上的快速古典和量子算法

Fast Classical and Quantum Algorithms for Online $k$-server Problem on Trees

论文作者

Kapralov, Ruslan, Khadiev, Kamil, Mokut, Joshua, Shen, Yixin, Yagafarov, Maxim

论文摘要

我们考虑在线算法在树上的$ K $ - 服务器问题。 Chrobak和Larmore提出了具有最佳竞争比率的此问题的$ K $竞争算法。但是,他们的算法的幼稚实现具有处理每个查询的$ o(n)$时间复杂性,其中$ n $是树中的节点数量。我们提出了该算法的新的时间效率实现,该算法具有$ O(n \ log n)$用于预处理的时间复杂性和$ o \ left(k^2 + k \ cdot \ cdot \ log n \ right)$用于处理查询的时间。我们还为使用字符串路径呈现树节点的情况提出了一种量子算法。在这种情况下,不需要预处理,每个查询的时间复杂度为$ O(k^2 \ sqrt {n} \ log n)$。当查询数为$ o \ left(\ frac {\ sqrt {n}}} {k^2 \ log n} \ right)$时,与我们的经典算法相比,我们在总运行时获得了量子加速。 我们还给出了一种简单的量子算法,以在$ m $对象集合中找到第一个标记的元素,即使在输入Oracle上存在双面有限错误的情况下,该元素也可以。它具有最差的复杂性$ O(\ sqrt {m})$。在输入上的单方面错误的特定情况下,它预计时间复杂性$ o(\ sqrt {x})$,其中$ x $是第一个标记元素的位置。与以前的工作相比,我们的算法可以处理输入Oracle中的错误。

We consider online algorithms for the $k$-server problem on trees. Chrobak and Larmore proposed a $k$-competitive algorithm for this problem that has the optimal competitive ratio. However, a naive implementation of their algorithm has $O(n)$ time complexity for processing each query, where $n$ is the number of nodes in the tree. We propose a new time-efficient implementation of this algorithm that has $O(n\log n)$ time complexity for preprocessing and $O\left(k^2 + k\cdot \log n\right)$ time for processing a query. We also propose a quantum algorithm for the case where the nodes of the tree are presented using string paths. In this case, no preprocessing is needed, and the time complexity for each query is $O(k^2\sqrt{n}\log n)$. When the number of queries is $o\left(\frac{\sqrt{n}}{k^2\log n}\right)$, we obtain a quantum speed-up on the total runtime compared to our classical algorithm. We also give a simple quantum algorithm to find the first marked element in a collection of $m$ objects, that works even in the presence of two-sided bounded errors on the input oracle. It has worst-case complexity $O(\sqrt{m})$. In the particular case of one-sided errors on the input, it has expected time complexity $O(\sqrt{x})$ where $x$ is the position of the first marked element. Compare with previous work, our algorithm can handle errors in the input oracle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源