论文标题

汉密尔顿 - 雅各比方程与ra量度值的标量保护法的不连续解决方案:奇异性的消失

Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conservation laws: Disappearance of singularities

论文作者

Bertsch, M., Smarrazzo, F., Terracina, A., Tesei, A.

论文摘要

令$ h $为有限的Lipschitz连续功能。我们考虑汉密尔顿 - 雅各比方程的不连续粘度解决方案$ u_ {t}+h(u_x)= 0 $和签名的radon测量估计熵解决方案$ u_ {t}+[t}+[h(u)] _ x = 0 $。在证明了正式关系$ u_x = u $的确切陈述之后,我们建立了(严格为正面!)时间的估算值,在该时间中,解决方案的奇异性消失了。在这里,在汉密尔顿 - 雅各比方程式中,奇异性是跳跃不连续性,并且在保护法的情况下签署了奇异措施。

Let $H$ be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton-Jacobi equation $U_{t}+H(U_x)=0$ and signed Radon measure valued entropy solutions of the conservation law $u_{t}+[H(u)]_x=0$. After having proved a precise statement of the formal relation $U_x=u$, we establish estimates for the (strictly positive!) times at which singularities of the solutions disappear. Here singularities are jump discontinuities in case of the Hamilton-Jacobi equation and signed singular measures in case of the conservation law.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源