论文标题

广义堤防路径中的下步统计

Down-step statistics in generalized Dyck paths

论文作者

Asinowski, Andrei, Hackl, Benjamin, Selkirk, Sarah J.

论文摘要

在$ k_t $ -DOCK路径中的成对上步之间的下步数,由步骤$ \ {(1,k),(1,-1)\}组成的染色路径的概括,以使该路径在$ y = -t $的线上保持(弱)。结果是通过生成函数的肉豆素证明的,并导致几个有趣的身份以及与其他组合结构的链接。特别是,用于编码理论中使用的卷积卷积代码(二进制矩阵)的$ K_T $ -DYCK路径与穿孔模式之间存在联系。令人惊讶的是,在限制了通常的戴克路径后,这会产生加泰罗尼亚数字的新​​组合解释。

The number of down-steps between pairs of up-steps in $k_t$-Dyck paths, a generalization of Dyck paths consisting of steps $\{(1, k), (1, -1)\}$ such that the path stays (weakly) above the line $y=-t$, is studied. Results are proved bijectively and by means of generating functions, and lead to several interesting identities as well as links to other combinatorial structures. In particular, there is a connection between $k_t$-Dyck paths and perforation patterns for punctured convolutional codes (binary matrices) used in coding theory. Surprisingly, upon restriction to usual Dyck paths this yields a new combinatorial interpretation of Catalan numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源