论文标题

关于可折叠式下降竞技场的策略的推理,并具有不完美的信息

Reasoning about strategies on collapsible pushdown arenas with imperfect information

论文作者

Maubert, Bastien, Murano, Aniello, Serre, Olivier

论文摘要

具有不完美信息(SLIR)的策略逻辑是一种非常表达的逻辑,旨在表达分布式系统中战略能力的复杂属性。先前关于SLIR的工作集中在有限的系统上,并表明,当有关系统控制状态的信息在系统的播放器或组件之间是层次结构时,可以决定模型检查问题,这意味着可以根据其各自对国家的了解来完全订购播放器或组件。我们表明,在自然限制下可见堆栈含量可见的自然限制下,从可折叠(高阶)下降系统产生的有限系统转变为无限系统。证明遵循与有限系统相同的行,但需要使用(可折叠)交替的俯卧撑树自动机。这种自动机是不可决定的,但是引入并证明了半定的下降树自动机,以研究与两个玩家的下降系统上的战略问题。为了通过层次信息来解决多个玩家,我们进一步完善了这些自动机:我们定义了方向引导(可折叠)俯卧撑树自动机,并表明它们在投影,非确定性和范围内稳定。对于用于处理不完善信息的后一种操​​作,在某些假设下,稳定性在具有可见堆栈的系统时所满足。然后,我们使用这些自动机证明我们的主要结果。

Strategy Logic with imperfect information (SLiR) is a very expressive logic designed to express complex properties of strategic abilities in distributed systems. Previous work on SLiR focused on finite systems, and showed that the model-checking problem is decidable when information on the control states of the system is hierarchical among the players or components of the system, meaning that the players or components can be totally ordered according to their respective knowledge of the state. We show that moving from finite to infinite systems generated by collapsible (higher-order) pushdown systems preserves decidability, under the natural restriction that the stack content is visible. The proof follows the same lines as in the case of finite systems, but requires to use (collapsible) alternating pushdown tree automata. Such automata are undecidable, but semi-alternating pushdown tree automata were introduced and proved decidable, to study a strategic problem on pushdown systems with two players. In order to tackle multiple players with hierarchical information, we refine further these automata: we define direction-guided (collapsible) pushdown tree automata, and show that they are stable under projection, nondeterminisation and narrowing. For the latter operation, used to deal with imperfect information, stability holds under some assumption that is satisfied when used for systems with visible stack. We then use these automata to prove our main result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源