论文标题
直接和迭代求解器的可伸缩性分析,用于建模非绝缘超导煎饼电磁阀的充电
Scalability Analysis of Direct and Iterative Solvers Used to Model Charging of Non-insulated Superconducting Pancake Solenoids
论文作者
论文摘要
提出了用于充电模拟非绝缘超导煎饼电磁阀的数学模型。数值解决方案是通过使用各种求解器在PETRA-M FEM平台上实现的仿真模型获得的。对于四个不同的煎饼电磁阀,具有不同数量的转弯和网格元素的直接和预处理迭代求解器进行可伸缩性分析。已经发现,即使系统中有两个截然不同的时间尺度,迭代求解器组合(FGMRES-GMRES)与平行的辅助空间Maxwell求解器(AMS)预处理均优胜于并行的直接求解器(Mumps)。通常,发现迭代求解器的计算时间随螺线管中的转弯数和/或为超导材料假定的电导率增加而增加。
A mathematical model for the charging simulation of non-insulated superconducting pancake solenoids is presented. Numerical solutions are obtained by the simulation model implemented on the Petra-M FEM platform using a variety of solvers. A scalability analysis is performed for both direct and preconditioned iterative solvers for four different pancakes solenoids with a varying number of turns and mesh elements. It is found that even with two extremely different time scales in the system an iterative solver combination (FGMRES-GMRES) in conjunction with the parallel Auxiliary Space Maxwell Solver (AMS) preconditioner outperforms a parallelized direct solver (MUMPS). In general, the computational time of the iterative solver is found to increase with the number of turns in the solenoids and/or the conductivity assumed for the superconducting material.