论文标题
在带有dirichlet或neumann套餐的周期性介质中波的光谱渐近学上
On the spectral asymptotics of waves in periodic media with Dirichlet or Neumann exclusions
论文作者
论文摘要
我们考虑在有限的波数和频率下定期媒体中标量波方程的均质化,重点是以下特征:(a)$ \ mathbb {r}^d $,$ d $,$ d \ \!\ geqslant \! 状况。利用Bloch波扩展,我们通过渐近ANSATZ追求这个目标,该目标是从给定的波数 - 埃金频率对(在第一个Brillouin区域内)作为扰动参数的“光谱距离”。然后,我们通过标量波场的投影引入有效的波动运动,以在光谱邻域的起源评估的周期性单位单元格的Bloch特征功能。对于一般性,我们解释了波方程中的源项的存在,并在给定的波数中考虑了孤立,重复和附近特征值的通用案例。通过这种方式,我们获得了有效模型的调色板,这些模型既具有波浪和dirac型行为,它们的适用性由本地带的结构和特征功能基础控制。在所有频谱制度中,我们都会追求至少至少一阶扩展的均质描述,这些描述具有渐近化的Bloch-Wave操作员的渐近校正和同质化的源术语。本质上,这种框架为超材料和声音晶体中各种波浪现象的合成提供了一个方便的平台。提出的均质化框架通过渐近近似(i)kagome晶格的分散关系进行近似,并以六角形Neumann套餐为特征,以及(ii)“固定”“固定”正方形晶格,具有圆形的dirichlet套。我们通过研究kagome晶格的响应来完成分析发展的数值刻画,这是由于偶极样源术语作用在带隙的边缘附近。
We consider homogenization of the scalar wave equation in periodic media at finite wavenumbers and frequencies, with the focus on continua characterized by: (a) arbitrary Bravais lattice in $\mathbb{R}^d$, $d\!\geqslant\!2$, and (b) exclusions i.e. "voids" that are subject to homogenous (Neumann or Dirichlet) boundary conditions. Making use of the Bloch wave expansion, we pursue this goal via asymptotic ansatz featuring the "spectral distance" from a given wavenumber-eigenfrequency pair (within the first Brillouin zone) as the perturbation parameter. We then introduce the effective wave motion via projection(s) of the scalar wavefield onto the Bloch eigenfunction(s) for the unit cell of periodicity, evaluated at the origin of a spectral neighborhood. For generality, we account for the presence of the source term in the wave equation and we consider -- at a given wavenumber -- generic cases of isolated, repeated, and nearby eigenvalues. In this way we obtain a palette of effective models, featuring both wave- and Dirac-type behaviors, whose applicability is controlled by the local band structure and eigenfunction basis. In all spectral regimes, we pursue the homogenized description up to at least first order of expansion, featuring asymptotic corrections of the homogenized Bloch-wave operator and the homogenized source term. Inherently, such framework provides a convenient platform for the synthesis of a wide range of wave phenomena in metamaterials and phononic crystals. The proposed homogenization framework is illustrated by approximating asymptotically the dispersion relationships for (i) Kagome lattice featuring hexagonal Neumann exclusions, and (ii) "pinned" square lattice with circular Dirichlet exclusions. We complete the numerical portrayal of analytical developments by studying the response of a Kagome lattice due to a dipole-like source term acting near the edge of a band gap.