论文标题

结晶与玻璃化理论

Theory of Crystallization versus Vitrification

论文作者

Hasyim, Muhammad R., Mandadapu, Kranthi K.

论文摘要

在玻璃形成材料中结晶与玻璃化之间的竞争表现为时间温度转化(TTT)图中的非单调行为,这将结晶的时间尺度量化为温度的函数。我们开发了一个粗粒的晶格模型,即箭头模型,以探索该竞争背后的物理。使用蒙特卡洛模拟,该模型展示了导致多晶结构的非单调TTT图,其两个不同的方案受晶体成核或生长的限制。在高温下,结晶受到成核的限制,并导致紧凑型晶粒的生长。在低温下,晶体生长受玻璃动力学的影响,并通过动态异质和分层的弛豫途径进行,产生分形和损坏的晶体。为了解释这些现象,我们将Kolmogorov-Johnson-Mehl-Avrami理论与成核的现场理论相结合,晶体生长的随机行走理论以及玻璃动力学的动态促进理论。统一理论产生了一个分析公式,该公式将结晶时间尺度与成核和增长率通过统治模型玻璃动力学的通用指数。我们表明,带有通用指数的公式与蒙特卡洛模拟数据产生了极好的一致性,因此,它也解释了该模型产生的非单调TTT图。该模型和理论都可用于理解各种玻璃系统中的结构排序,包括大量金属玻璃合金,有机分子和胶体悬浮液。

The competition between crystallization and vitrification in glass-forming materials manifests as a non-monotonic behavior in the time-temperature transformation (TTT) diagrams, which quantify the time scales for crystallization as a function of temperature. We develop a coarse-grained lattice model, the Arrow-Potts model, to explore the physics behind this competition. Using Monte Carlo simulations, the model showcases non-monotonic TTT diagrams resulting in polycrystalline structures, with two distinct regimes limited by either crystal nucleation or growth. At high temperatures, crystallization is limited by nucleation and results in the growth of compact crystal grains. At low temperatures, crystal growth is influenced by glassy dynamics, and proceeds through dynamically heterogeneous and hierarchical relaxation pathways producing fractal and ramified crystals. To explain these phenomena, we combine the Kolmogorov-Johnson-Mehl-Avrami theory with the field theory of nucleation, a random walk theory for crystal growth, and the dynamical facilitation theory for glassy dynamics. The unified theory yields an analytical formula relating crystallization timescale to the nucleation and growth rates through universal exponents governing glassy dynamics of the model. We show that the formula with the universal exponents yields excellent agreement with the Monte Carlo simulation data and thus, it also accounts for the non-monotonic TTT diagrams produced by the model. Both the model and theory can be used to understand structural ordering in various glassy systems including bulk metallic glass alloys, organic molecules, and colloidal suspensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源