论文标题
在希尔伯特空间的高斯内核上,双曲线空间上的内核
On Gaussian kernels on Hilbert spaces and kernels on Hyperbolic spaces
论文作者
论文摘要
本文描述了普遍/完全严格的积极确定/ $ c_ {0} $ - 在希尔伯特空间上的高斯内核的通用概念。结果,我们为由Schoenberg研究和开发的重要内核以及在地理统计学,gneiting类及其概括方面所研究和开发的重要内核的表征类似。通过使用类似的技术,或通过Hilbert空间上高斯内核的直接结果,我们为在双曲线空间上定义的内核家族的概念表征了相同的概念。
This paper describes the concepts of Universal/ Integrally Strictly Positive Definite/ $C_{0}$-Universal for the Gaussian kernel on a Hilbert space. As a consequence we obtain a similar characterization for an important family of kernels studied and developed by Schoenberg and also on a family of spatial-time kernels popular on geostatistics, the Gneiting class, and its generalizations. Either by using similar techniques, or by a direct consequence of the Gaussian kernel on Hilbert spaces, we characterize the same concepts for a family of kernels defined on a Hyperbolic space.