论文标题
水中脉冲等离子体的超快X射线成像
Ultrafast X-ray imaging of pulsed plasmas in water
论文作者
论文摘要
液体中的脉冲等离子体在物质的三个阶段(液体,气体,等离子体)之间表现出复杂的相互作用,目前在几个领域的广泛应用中使用,但是在我们对液体中血浆启动的理解方面的明显知识差距却阻碍了额外的应用和控制;目前,该研究领域缺乏全面的预测模型。为了在实验中在该领域的进展,在这里,我们介绍了第一个已知的超快(50 ps)X射线图像,这些脉冲血浆启动过程(+25 kV,10 ns,5 MJ)由Argonne国家实验室高级光子源(APS)提供的X射线成像技术提供,并支持NANoseCondical Imcutialical Imcutivalial Imcutival x-ray Imcunigant and Accution x-ray Imcunigation and Accutional Mogele and A.这些结果清楚地解析了通常被光发射(<100 ns)遮盖的启动时间尺度期间狭窄(〜10微米)的低密度等离子体通道,这是血浆实验的一个众所周知且困难的问题,无需访问诸如APS同步器之类的最先进的X射线源。这项工作中介绍的图像与几种流行的血浆起始假设说明了,支持电扭曲和气泡变形作为主要的起始现象。我们还证明了这项工作中使用的等离子体设置是一件便宜的($ <$ <$ \ $ \ $ 100k),紧凑且可重复的基准成像目标(29.1 km/s,1 tw/cm $^2 $),可用于开发下一代超级快速图像的高增强密度物理学(HEDP),以及HEDPRORN-HENDP RENTIBER-HEDP RENTCHERITY INTEMATION-HEDP RENTIBLY-HEDPRORTROR-HEDPRORTRON。
Pulsed plasmas in liquids exhibit complex interaction between three phases of matter (liquids, gas, plasmas) and are currently used in a wide range of applications across several fields, however significant knowledge gaps in our understanding of plasma initiation in liquids hinder additional application and control; this area of research currently lacks a comprehensive predictive model. To aid progress in this area experimentally, here we present the first-known ultrafast (50 ps) X-ray images of pulsed plasma initiation processes in water (+25 kV, 10 ns, 5 mJ), courtesy of the X-ray imaging techniques available at Argonne National Laboratory's Advanced Photon Source (APS), with supporting nanosecond optical imaging and a computational X-ray diffraction model. These results clearly resolve narrow (~10 micron) low-density plasma channels during initiation timescales typically obscured by optical emission (<100 ns), a well-known and difficult problem to plasma experiments without access to state-of-the-art X-ray sources such as the APS synchrotron. Images presented in this work speak to several of the prevailing plasma initiation hypotheses, supporting electrostriction and bubble deformation as dominant initiation phenomena. We also demonstrate the plasma setup used in this work as a cheap ($<$US\$100k), compact, and repeatable benchmark imaging target (29.1 km/s, 1 TW/cm$^2$) useful for the development of next-generation ultrafast imaging of high-energy-density physics (HEDP), as well as easier integration of HEDP research into synchrotron-enabled facilities.