论文标题
指数和稀疏多项式上的指数总和在有限场上
Exponential sums with sparse polynomials over finite fields
论文作者
论文摘要
我们获得了指数总和的新范围modulo a Prime $ p $,带有稀疏多项式$ a_0x^{n_0} + \ cdots +a_νx^{n_νx} $。界限取决于指数的各种最大的常见分隔线$ n_0,\ ldots,n_ν$及其差异。特别是,获得了两个新的二项式范围,从而改善了广泛的参数范围。
We obtain new bounds of exponential sums modulo a prime $p$ with sparse polynomials $a_0x^{n_0} + \cdots + a_νx^{n_ν}$. The bounds depend on various greatest common divisors of exponents $n_0, \ldots, n_ν$ and their differences. In particular, two new bounds for binomials are obtained, improving previous results in broad ranges of parameters.