论文标题
在Swendsen-Wang和Metropolis算法中的三维海森堡模型中的非平衡松弛中的温度缩放
Temperature scaling in nonequilibrium relaxation in three-dimensional Heisenberg model in the Swendsen-Wang and Metropolis algorithms
论文作者
论文摘要
最近,目前的作者提出了关键蒙特卡洛放松过程的非平衡缩放缩放(NE-ES)方案,该过程在整个模拟时间区域中缩放了放松数据,无论功能形式如何,这两者都是针对集群算法中的伸展型临界放松,以及在局部和局部范围内的关键放宽局部的关键放宽。在本研究中,我们将该方案推广到关键放松过程,并在整个模拟时间区域中为各种温度扩展松弛数据。这是集群算法中非临界缩放的第一个建议,基于幂律临界放松的动态有限尺寸缩放理论无法描述。例如,我们研究了先前用NE-ES [Y. Nonomura和Y. tomita,物理。 Rev. E 93,012101(2016)]在Swendsen-Wang和Metropolis算法中。
Recently, the present authors proposed the nonequilibrium-to-equilibrium scaling (NE-ES) scheme for critical Monte Carlo relaxation process, which scales relaxation data in the whole simulation-time regions regardless of functional forms, namely both for the stretched-exponential critical relaxation in cluster algorithms and for the power-law critical relaxation in local-update algorithms. In the present study, we generalize this scheme to off-critical relaxation process, and scale relaxation data for various temperatures in the whole simulation-time regions. This is the first proposal of the off-critical scaling in cluster algorithms, which cannot be described by the dynamical finite-size scaling theory based on the power-law critical relaxation. As an example, we investigate the three-dimensional Heisenberg model previously analyzed with the NE-ES [Y. Nonomura and Y. Tomita, Phys. Rev. E 93, 012101 (2016)] in the Swendsen-Wang and Metropolis algorithms.