论文标题
有限生成的组在双曲空间上均匀作用
Finitely generated groups acting uniformly properly on hyperbolic space
论文作者
论文摘要
我们在双曲空间上均匀作用的一组无数序列。我们表明,只有这些组中的许多人实际上可以无扭转。这给出了在几乎不含扭转的双曲线空间上均匀作用的组的新示例,不能是双曲线组的亚组。
We construct an uncountable sequence of groups acting uniformly properly on hyperbolic spaces. We show that only countably many of these groups can be virtually torsion-free. This gives new examples of groups acting uniformly properly on hyperbolic spaces that are not virtually torsion-free and cannot be subgroups of hyperbolic groups.