论文标题

有限生成的组在双曲空间上均匀作用

Finitely generated groups acting uniformly properly on hyperbolic space

论文作者

Kropholler, Robert, Vankov, Vladimir

论文摘要

我们在双曲空间上均匀作用的一组无数序列。我们表明,只有这些组中的许多人实际上可以无扭转。这给出了在几乎不含扭转的双曲线空间上均匀作用的组的新示例,不能是双曲线组的亚组。

We construct an uncountable sequence of groups acting uniformly properly on hyperbolic spaces. We show that only countably many of these groups can be virtually torsion-free. This gives new examples of groups acting uniformly properly on hyperbolic spaces that are not virtually torsion-free and cannot be subgroups of hyperbolic groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源