论文标题
COV-ABM:基于随机离散的代理框架,用于模拟COVID-19的时空动力学
CoV-ABM: A stochastic discrete-event agent-based framework to simulate spatiotemporal dynamics of COVID-19
论文作者
论文摘要
该论文开发了一个基于随机剂的模型(ABM),模仿了传染病在地理领域中的传播。该模型旨在模拟SARS-COV2疾病的时空扩散,称为COVID-19。我们的SARS-COV2基于SARS-COV2的ABM框架(COV-ABM)模拟了任何地理规模的传播,从村庄到一个国家,并考虑了SARS-COV2病毒的独特特征,例如其在环境中的持久性。因此,与其他模拟器不同,COV-ABM计算每个位置空间内活动病毒的密度,以获取每个药物的病毒传递概率。它还使用当地的人口普查和健康数据来为每个人创建健康和风险因素概况。提出的模型依赖于灵活的时间戳量表来优化计算速度和细节级别。在我们的框架中,每个代理都代表一个与周围空间和同一空间内其他相邻代理相互作用的人。此外,家庭随机每日任务被制定为相应的家庭成员跟踪。该模型还制定了每个友谊和亲戚子集会议的可能性。拟议框架的主要目的是三重:说明SARS-COV疾病的动态,以确定具有更高可能成为感染枢纽可能性的位置,并提供一个决策支持系统,以设计有效的干预措施以与Pandemics作斗争。该框架采用具有不同干预情景的病毒疾病的SEIHRD动态。该论文模拟了Covid-19在美国特拉华州的传播,并使用了近一百万个随机代理。结果在15周内取得了15周的时间戳,该时间戳为1小时显示,该时间戳记成为感染的枢纽。该论文还说明了随着爆发的选择,医院如何不知所措。
The paper develops a stochastic Agent-Based Model (ABM) mimicking the spread of infectious diseases in geographical domains. The model is designed to simulate the spatiotemporal spread of SARS-CoV2 disease, known as COVID-19. Our SARS-CoV2-based ABM framework (CoV-ABM) simulates the spread at any geographical scale, ranging from a village to a country and considers unique characteristics of SARS-CoV2 viruses such as its persistence in the environment. Therefore, unlike other simulators, CoV-ABM computes the density of active viruses inside each location space to get the virus transmission probability for each agent. It also uses the local census and health data to create health and risk factor profiles for each individual. The proposed model relies on a flexible timestamp scale to optimize the computational speed and the level of detail. In our framework each agent represents a person interacting with the surrounding space and other adjacent agents inside the same space. Moreover, families stochastic daily tasks are formulated to get tracked by the corresponding family members. The model also formulates the possibility of meetings for each subset of friendships and relatives. The main aim of the proposed framework is threefold: to illustrate the dynamics of SARS-CoV diseases, to identify places which have a higher probability to become infection hubs and to provide a decision-support system to design efficient interventions in order to fight against pandemics. The framework employs SEIHRD dynamics of viral diseases with different intervention scenarios. The paper simulates the spread of COVID-19 in the State of Delaware, United States, with near one million stochastic agents. The results achieved over a period of 15 weeks with a timestamp of 1 hour show which places become the hubs of infection. The paper also illustrates how hospitals get overwhelmed as the outbreak reaches its pick.