论文标题

在Benincasa-Dowker-Glaser Causal set Action的连续限制上

On the continuum limit of Benincasa-Dowker-Glaser causal set action

论文作者

Machet, Ludovico, Wang, Jinzhao

论文摘要

我们研究了Benincasa-Dowker-Glaser因果关系在因果关系紧凑区域的连续限制。特别是,我们计算出在各个时空维度存在任意曲率的情况下,在小因果钻石上随机撒在小因果钻石上的因果集的作用。在连续限制中,我们表明该动作允许有限的限制。更重要的是,限制由贝纳卡萨 - 戴克 - 格拉斯 - 格拉特(Benincasa-Dowker-Glaser)动作预测的爱因斯坦 - 希尔伯特(Einstein-Hilbert)批量术语组成,边界项与与codimension-two-two关节体积完全成正比的边界术语。我们的计算提供了有力的证据,以支持贝纳纳萨萨 - 戴克 - 格兰特人的作用自然包括在因果凸区域进行评估时的codimension-two边界项。

We study the continuum limit of the Benincasa-Dowker-Glaser causal set action on a causally convex compact region. In particular, we compute the action of a causal set randomly sprinkled on a small causal diamond in the presence of arbitrary curvature in various spacetime dimensions. In the continuum limit, we show that the action admits a finite limit. More importantly, the limit is composed by an Einstein-Hilbert bulk term as predicted by the Benincasa-Dowker-Glaser action, and a boundary term exactly proportional to the codimension-two joint volume. Our calculation provides strong evidence in support of the conjecture that the Benincasa-Dowker-Glaser action naturally includes codimension-two boundary terms when evaluated on causally convex regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源